Clinical Impact of Neoantigen Burden and HLA Loss in Aggressive B-Cell Lymphomas Treated with CD19 CAR T-Cell

人类白细胞抗原 淋巴瘤 免疫学 嵌合抗原受体 生物 医学 免疫疗法 抗原 免疫系统
作者
Bachisio Ziccheddu,Michael D. Jain,Monika Chojnacka,Michael A. Durante,Julieta Abraham-Miranda,Meghan Menges,Ola Landgren,Marco L. Davila,Jonathan H. Schatz,Francesco Maura,Frederick L. Locke
出处
期刊:Blood [American Society of Hematology]
卷期号:142 (Supplement 1): 4362-4362
标识
DOI:10.1182/blood-2023-182821
摘要

INTRODUCTION: CD19-directed chimeric antigen receptor (CAR-19) T cells have revolutionized clinical outcomes in heavily pretreated patients with aggressive B-cell lymphoma. Notably, emerging evidence suggests that the efficacy of CAR-19 therapy extends beyond direct tumor killing and includes its ability to stimulate and guide the host immune system in the fight against tumor cells. To delve deeper into this crucial aspect, our study utilized whole-genome sequencing (WGS) data to explore the impact of neoantigen burden and HLA loss in patients with aggressive large B-cell lymphoma (rrLBCL) who received CAR-19 therapy (WGS; Jain et al. Blood 2022). METHODS: To characterize the importance of genomic immunogenicity in rrLBCL, we conducted a comprehensive analysis of 61 whole-genome sequencing (WGS) and 54 RNA sequencing samples from 54 rrLBCL patients who underwent CAR-19 therapy. Among these samples, 39 were collected at baseline and 15 at relapse, with samples from 7 patients obtained both before and after treatment. Our analytical workflow defined HLA class I mono- or biallelic loss by integrating copy number variants, structural variants, single nucleotide variants, and small insertion-deletion data with allele-specific HLA loss information obtained from LOHHLA software. pVACseq algorithm was used to predict the number of clonal neoantigens in each sample, along with the corresponding HLA allele presenting each of them. RESULTS: HLA class I loss was detected in 38.9% of the patients, with no impact on progression free survival (PFS). Interestingly 7 patients had biallelic loss of HLA-B, and all of them experienced progression within the first year (p=0.03). To expand our analysis, we explored B2M an essential component of HLA class I complexes. B2M was lost in 33.3% of the patients without showing any association with shorter PFS. However, restricting the analysis to patients with B2M biallelic loss (defined as presence of deletions of both alleles, or deletion and mutation with high impact in the structure and function of the B2M protein) 4/4 patients progressed. Overall, all 11 patients with genomic events leading to biallelic loss of HLA class I progressed (p=0.007). Notably, in one patient (CAR_39), biallelic inactivation of HLA class I was not detected at baseline but emerged with the dominant clone at disease progression. HLA class I biallelic loss was associated with genomic drivers previously identified in our study as significantly associated with CAR-19 failure: APOBEC (3/11) and SBS18 (oxygen radical stress; 2/11) mutational signatures, chromothripsis (4/11), RHOA deletions (6/11), and double minutes (4/11). Next, we analyzed the impact of the neoantigen burden corrected for their HLA affinity and allelic status on the outcome of CAR-19 treatment. Patients with high number of neoantigens had shorter PFS (p=0.0095) and were enriched for genomic drivers associated with poor response after CAR-19 (e.g., APOBEC and SBS18). Interestingly, the neoantigen burden had a bimodal distribution across patients that progressed with two distinct groups: one with high neoantigen burden, biallelic loss of HLA, and high genomic complexity and the other with low genomic complexity and low neoantigen burden. Restricting the analysis to patients with retained HLA and low genomic complexity, high neoantigen burden associated with prolonged and favorable response to CAR-T therapy (p=0.04). CONCLUSION: This study offers evidence that there is a critical relationship between CAR-19 efficacy, LBCL immunogenicity, and the endogenous immune response.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rottyyii完成签到,获得积分20
1秒前
慕青应助失眠的流沙采纳,获得10
1秒前
星星完成签到 ,获得积分10
2秒前
褚香旋完成签到,获得积分10
2秒前
2秒前
Lucas应助zt采纳,获得10
4秒前
peng123完成签到,获得积分20
5秒前
5秒前
禹冷玉完成签到,获得积分10
6秒前
zzz发布了新的文献求助10
6秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
euler发布了新的文献求助10
8秒前
XIXIXI发布了新的文献求助10
11秒前
li完成签到,获得积分10
11秒前
小蘑菇应助失眠的流沙采纳,获得10
11秒前
11秒前
peng123发布了新的文献求助10
12秒前
无糖零脂发布了新的文献求助10
12秒前
鹿傥发布了新的文献求助10
13秒前
13秒前
323431完成签到,获得积分10
14秒前
充电宝应助whuhustwit采纳,获得10
14秒前
14秒前
15秒前
16秒前
李伟完成签到,获得积分10
16秒前
17秒前
上官若男应助柔弱云朵采纳,获得10
17秒前
小魔女完成签到,获得积分10
17秒前
Hello应助浮晨采纳,获得10
18秒前
18秒前
汉堡包应助四糸乃采纳,获得10
19秒前
七号楼少女完成签到,获得积分10
20秒前
20秒前
Aoren完成签到,获得积分10
20秒前
20秒前
20秒前
任秦发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577678
求助须知:如何正确求助?哪些是违规求助? 4662703
关于积分的说明 14743115
捐赠科研通 4603383
什么是DOI,文献DOI怎么找? 2526334
邀请新用户注册赠送积分活动 1496100
关于科研通互助平台的介绍 1465546