An image registration-based self-supervised Su-Net for carotid plaque ultrasound image segmentation

人工智能 分割 计算机科学 深度学习 特征(语言学) 模式识别(心理学) 任务(项目管理) 图像配准 图像(数学) 医学 计算机视觉 语言学 哲学 经济 管理
作者
Jing Ding,Ran Zhou,Xiaoyue Fang,Furong Wang,Ji Wang,Haitao Gan,Aaron Fenster
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107957-107957 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107957
摘要

Total Plaque Area (TPA) measurement is critical for early diagnosis and intervention of carotid atherosclerosis in individuals with high risk for stroke. The delineation of the carotid plaques is necessary for TPA measurement, and deep learning methods can automatically segment the plaque and measure TPA from carotid ultrasound images. A large number of labeled images is essential for training a good deep learning model, but it is very difficult to collect such large labeled datasets for carotid image segmentation in clinical practice. Self-supervised learning can provide a possible solution to improve the deep-learning models on small labeled training datasets by designing a pretext task to pre-train the models without using the segmentation masks. However, the existing self-supervised learning methods do not consider the feature presentations of object contours. In this paper, we propose an image registration-based self-supervised learning method and a stacked U-Net (SSL-SU-Net) for carotid plaque ultrasound image segmentation, which can better exploit the semantic features of carotid plaque contours in self-supervised task training. Our network was trained on different numbers of labeled images (n = 10, 33, 50 and 100 subjects) and tested on 44 subjects from the SPARC dataset (n = 144, London, Canada). The network trained on the entire SPARC dataset was then directly applied to an independent dataset collected in Zhongnan hospital (n = 497, Wuhan, China). For the 44 subjects tested on the SPARC dataset, our method yielded a DSC of 80.25-89.18% and the produced TPA measurements, which were strongly correlated with manual segmentation (r = 0.965-0.995, ρ< 0.0001). For the Zhongnan dataset, the DSC was 90.3% and algorithm TPAs were strongly correlated with manual TPAs (r = 0.985, ρ< 0.0001). The results demonstrate that our proposed method yielded excellent performance and good generalization ability when trained on a small labeled dataset, facilitating the use of deep learning in carotid ultrasound image analysis and clinical practice. The code of our algorithm is available https://github.com/a610lab/Registration-SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重的小之完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
柔弱冰棍发布了新的文献求助10
2秒前
研友_5Y9775发布了新的文献求助10
2秒前
自觉子默发布了新的文献求助10
3秒前
Parwan发布了新的文献求助10
3秒前
3秒前
HJZ完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
哈哈哈完成签到,获得积分10
6秒前
XTechMan完成签到,获得积分10
6秒前
6秒前
老弟需要帮助完成签到,获得积分10
7秒前
7秒前
8秒前
万事顺意完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
哈哈哈发布了新的文献求助10
9秒前
满意雪碧完成签到,获得积分10
10秒前
11秒前
爆裂水龙头应助研友_5Y9775采纳,获得10
11秒前
elf完成签到,获得积分10
12秒前
停停走走发布了新的文献求助10
12秒前
rust发布了新的文献求助20
12秒前
自觉子默完成签到,获得积分10
12秒前
WWW完成签到,获得积分10
13秒前
13秒前
pluto应助靓丽的熠彤采纳,获得10
14秒前
小白完成签到,获得积分20
14秒前
在水一方应助追风采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
15秒前
BowieHuang应助科研通管家采纳,获得10
15秒前
jerry发布了新的文献求助10
15秒前
李健应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775286
求助须知:如何正确求助?哪些是违规求助? 5623037
关于积分的说明 15438234
捐赠科研通 4907576
什么是DOI,文献DOI怎么找? 2640794
邀请新用户注册赠送积分活动 1588636
关于科研通互助平台的介绍 1543521