An image registration-based self-supervised Su-Net for carotid plaque ultrasound image segmentation

人工智能 分割 计算机科学 深度学习 特征(语言学) 模式识别(心理学) 任务(项目管理) 图像配准 图像(数学) 医学 计算机视觉 语言学 哲学 经济 管理
作者
Jing Ding,Ran Zhou,Xiaoyue Fang,Furong Wang,Ji Wang,Haitao Gan,Aaron Fenster
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:244: 107957-107957 被引量:2
标识
DOI:10.1016/j.cmpb.2023.107957
摘要

Total Plaque Area (TPA) measurement is critical for early diagnosis and intervention of carotid atherosclerosis in individuals with high risk for stroke. The delineation of the carotid plaques is necessary for TPA measurement, and deep learning methods can automatically segment the plaque and measure TPA from carotid ultrasound images. A large number of labeled images is essential for training a good deep learning model, but it is very difficult to collect such large labeled datasets for carotid image segmentation in clinical practice. Self-supervised learning can provide a possible solution to improve the deep-learning models on small labeled training datasets by designing a pretext task to pre-train the models without using the segmentation masks. However, the existing self-supervised learning methods do not consider the feature presentations of object contours. In this paper, we propose an image registration-based self-supervised learning method and a stacked U-Net (SSL-SU-Net) for carotid plaque ultrasound image segmentation, which can better exploit the semantic features of carotid plaque contours in self-supervised task training. Our network was trained on different numbers of labeled images (n = 10, 33, 50 and 100 subjects) and tested on 44 subjects from the SPARC dataset (n = 144, London, Canada). The network trained on the entire SPARC dataset was then directly applied to an independent dataset collected in Zhongnan hospital (n = 497, Wuhan, China). For the 44 subjects tested on the SPARC dataset, our method yielded a DSC of 80.25-89.18% and the produced TPA measurements, which were strongly correlated with manual segmentation (r = 0.965-0.995, ρ< 0.0001). For the Zhongnan dataset, the DSC was 90.3% and algorithm TPAs were strongly correlated with manual TPAs (r = 0.985, ρ< 0.0001). The results demonstrate that our proposed method yielded excellent performance and good generalization ability when trained on a small labeled dataset, facilitating the use of deep learning in carotid ultrasound image analysis and clinical practice. The code of our algorithm is available https://github.com/a610lab/Registration-SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助迷人芙蓉采纳,获得10
1秒前
ssstuck发布了新的文献求助10
2秒前
bingshuaizhao发布了新的文献求助10
2秒前
无问西东完成签到 ,获得积分10
3秒前
Owen应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
柯一一应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
柯一一应助科研通管家采纳,获得10
5秒前
hzl发布了新的文献求助10
5秒前
8秒前
9秒前
乐乐应助刻苦的晓槐采纳,获得10
10秒前
思源应助grace采纳,获得10
11秒前
13秒前
大模型应助元g采纳,获得10
13秒前
充电宝应助lei029采纳,获得10
14秒前
15秒前
17秒前
17秒前
ooseabiscuit发布了新的文献求助10
18秒前
19秒前
田田田田发布了新的文献求助30
20秒前
20秒前
20秒前
Guai发布了新的文献求助10
22秒前
酷波er应助ccq采纳,获得10
22秒前
22秒前
grace发布了新的文献求助10
23秒前
李健应助离子键采纳,获得10
23秒前
酷炫的香魔完成签到,获得积分10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975339
求助须知:如何正确求助?哪些是违规求助? 3519670
关于积分的说明 11199199
捐赠科研通 3256002
什么是DOI,文献DOI怎么找? 1798043
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305