清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An image registration-based self-supervised Su-Net for carotid plaque ultrasound image segmentation

人工智能 分割 计算机科学 深度学习 特征(语言学) 模式识别(心理学) 任务(项目管理) 图像配准 图像(数学) 医学 计算机视觉 语言学 哲学 经济 管理
作者
Jing Ding,Ran Zhou,Xiaoyue Fang,Furong Wang,Ji Wang,Haitao Gan,Aaron Fenster
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107957-107957 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107957
摘要

Total Plaque Area (TPA) measurement is critical for early diagnosis and intervention of carotid atherosclerosis in individuals with high risk for stroke. The delineation of the carotid plaques is necessary for TPA measurement, and deep learning methods can automatically segment the plaque and measure TPA from carotid ultrasound images. A large number of labeled images is essential for training a good deep learning model, but it is very difficult to collect such large labeled datasets for carotid image segmentation in clinical practice. Self-supervised learning can provide a possible solution to improve the deep-learning models on small labeled training datasets by designing a pretext task to pre-train the models without using the segmentation masks. However, the existing self-supervised learning methods do not consider the feature presentations of object contours. In this paper, we propose an image registration-based self-supervised learning method and a stacked U-Net (SSL-SU-Net) for carotid plaque ultrasound image segmentation, which can better exploit the semantic features of carotid plaque contours in self-supervised task training. Our network was trained on different numbers of labeled images (n = 10, 33, 50 and 100 subjects) and tested on 44 subjects from the SPARC dataset (n = 144, London, Canada). The network trained on the entire SPARC dataset was then directly applied to an independent dataset collected in Zhongnan hospital (n = 497, Wuhan, China). For the 44 subjects tested on the SPARC dataset, our method yielded a DSC of 80.25-89.18% and the produced TPA measurements, which were strongly correlated with manual segmentation (r = 0.965-0.995, ρ< 0.0001). For the Zhongnan dataset, the DSC was 90.3% and algorithm TPAs were strongly correlated with manual TPAs (r = 0.985, ρ< 0.0001). The results demonstrate that our proposed method yielded excellent performance and good generalization ability when trained on a small labeled dataset, facilitating the use of deep learning in carotid ultrasound image analysis and clinical practice. The code of our algorithm is available https://github.com/a610lab/Registration-SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一盏壶完成签到,获得积分10
1秒前
Fairy完成签到,获得积分10
6秒前
poki完成签到 ,获得积分10
15秒前
山是山三十三完成签到 ,获得积分10
26秒前
48秒前
在水一方完成签到,获得积分0
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
Emperor完成签到 ,获得积分0
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
1分钟前
明理从露完成签到 ,获得积分10
1分钟前
冷傲半邪完成签到,获得积分10
2分钟前
1437594843完成签到 ,获得积分10
2分钟前
三水完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助20
3分钟前
pegasus0802完成签到,获得积分10
3分钟前
RED发布了新的文献求助10
3分钟前
3分钟前
小怪完成签到,获得积分10
3分钟前
3分钟前
3分钟前
lx完成签到,获得积分10
3分钟前
GMEd1son完成签到,获得积分10
3分钟前
xiaowangwang完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
橙橙完成签到 ,获得积分10
5分钟前
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
美好灵寒完成签到 ,获得积分10
6分钟前
科研通AI2S应助Jessica采纳,获得10
6分钟前
6分钟前
殷勤的涵梅完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
Future完成签到 ,获得积分10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664590
求助须知:如何正确求助?哪些是违规求助? 4865694
关于积分的说明 15108114
捐赠科研通 4823215
什么是DOI,文献DOI怎么找? 2582091
邀请新用户注册赠送积分活动 1536184
关于科研通互助平台的介绍 1494567