已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An image registration-based self-supervised Su-Net for carotid plaque ultrasound image segmentation

人工智能 分割 计算机科学 深度学习 特征(语言学) 模式识别(心理学) 任务(项目管理) 图像配准 图像(数学) 医学 计算机视觉 语言学 哲学 经济 管理
作者
Jing Ding,Ran Zhou,Xiaoyue Fang,Furong Wang,Ji Wang,Haitao Gan,Aaron Fenster
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107957-107957 被引量:1
标识
DOI:10.1016/j.cmpb.2023.107957
摘要

Total Plaque Area (TPA) measurement is critical for early diagnosis and intervention of carotid atherosclerosis in individuals with high risk for stroke. The delineation of the carotid plaques is necessary for TPA measurement, and deep learning methods can automatically segment the plaque and measure TPA from carotid ultrasound images. A large number of labeled images is essential for training a good deep learning model, but it is very difficult to collect such large labeled datasets for carotid image segmentation in clinical practice. Self-supervised learning can provide a possible solution to improve the deep-learning models on small labeled training datasets by designing a pretext task to pre-train the models without using the segmentation masks. However, the existing self-supervised learning methods do not consider the feature presentations of object contours. In this paper, we propose an image registration-based self-supervised learning method and a stacked U-Net (SSL-SU-Net) for carotid plaque ultrasound image segmentation, which can better exploit the semantic features of carotid plaque contours in self-supervised task training. Our network was trained on different numbers of labeled images (n = 10, 33, 50 and 100 subjects) and tested on 44 subjects from the SPARC dataset (n = 144, London, Canada). The network trained on the entire SPARC dataset was then directly applied to an independent dataset collected in Zhongnan hospital (n = 497, Wuhan, China). For the 44 subjects tested on the SPARC dataset, our method yielded a DSC of 80.25-89.18% and the produced TPA measurements, which were strongly correlated with manual segmentation (r = 0.965-0.995, ρ< 0.0001). For the Zhongnan dataset, the DSC was 90.3% and algorithm TPAs were strongly correlated with manual TPAs (r = 0.985, ρ< 0.0001). The results demonstrate that our proposed method yielded excellent performance and good generalization ability when trained on a small labeled dataset, facilitating the use of deep learning in carotid ultrasound image analysis and clinical practice. The code of our algorithm is available https://github.com/a610lab/Registration-SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助东北熊猫采纳,获得10
1秒前
Zack发布了新的文献求助20
2秒前
Owen应助无情寒荷采纳,获得10
3秒前
Yii发布了新的文献求助10
3秒前
恶恶么v发布了新的文献求助10
3秒前
tuanheqi应助miles采纳,获得30
5秒前
Polymer72应助东东采纳,获得10
7秒前
gudaobo完成签到 ,获得积分10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
sissiarno应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
pipi完成签到 ,获得积分10
9秒前
jiunuan发布了新的文献求助30
11秒前
夏紊完成签到 ,获得积分10
13秒前
YX完成签到,获得积分20
14秒前
14秒前
15秒前
小蘑菇应助小宁砸采纳,获得10
17秒前
东北熊猫发布了新的文献求助10
18秒前
Calvin-funsom完成签到,获得积分10
19秒前
顺顺ll发布了新的文献求助10
21秒前
大个应助热情的天蓝采纳,获得10
21秒前
德玛西亚完成签到,获得积分10
23秒前
24秒前
丽君发布了新的文献求助10
26秒前
pipi关注了科研通微信公众号
26秒前
羽羽完成签到 ,获得积分10
27秒前
朴素亦绿完成签到,获得积分10
28秒前
30秒前
31秒前
32秒前
33秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330247
求助须知:如何正确求助?哪些是违规求助? 2959843
关于积分的说明 8597367
捐赠科研通 2638376
什么是DOI,文献DOI怎么找? 1444234
科研通“疑难数据库(出版商)”最低求助积分说明 669078
邀请新用户注册赠送积分活动 656628