An image registration-based self-supervised Su-Net for carotid plaque ultrasound image segmentation

人工智能 分割 计算机科学 深度学习 特征(语言学) 模式识别(心理学) 任务(项目管理) 图像配准 图像(数学) 医学 计算机视觉 语言学 哲学 经济 管理
作者
Jing Ding,Ran Zhou,Xiaoyue Fang,Furong Wang,Ji Wang,Haitao Gan,Aaron Fenster
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:244: 107957-107957 被引量:2
标识
DOI:10.1016/j.cmpb.2023.107957
摘要

Total Plaque Area (TPA) measurement is critical for early diagnosis and intervention of carotid atherosclerosis in individuals with high risk for stroke. The delineation of the carotid plaques is necessary for TPA measurement, and deep learning methods can automatically segment the plaque and measure TPA from carotid ultrasound images. A large number of labeled images is essential for training a good deep learning model, but it is very difficult to collect such large labeled datasets for carotid image segmentation in clinical practice. Self-supervised learning can provide a possible solution to improve the deep-learning models on small labeled training datasets by designing a pretext task to pre-train the models without using the segmentation masks. However, the existing self-supervised learning methods do not consider the feature presentations of object contours. In this paper, we propose an image registration-based self-supervised learning method and a stacked U-Net (SSL-SU-Net) for carotid plaque ultrasound image segmentation, which can better exploit the semantic features of carotid plaque contours in self-supervised task training. Our network was trained on different numbers of labeled images (n = 10, 33, 50 and 100 subjects) and tested on 44 subjects from the SPARC dataset (n = 144, London, Canada). The network trained on the entire SPARC dataset was then directly applied to an independent dataset collected in Zhongnan hospital (n = 497, Wuhan, China). For the 44 subjects tested on the SPARC dataset, our method yielded a DSC of 80.25-89.18% and the produced TPA measurements, which were strongly correlated with manual segmentation (r = 0.965-0.995, ρ< 0.0001). For the Zhongnan dataset, the DSC was 90.3% and algorithm TPAs were strongly correlated with manual TPAs (r = 0.985, ρ< 0.0001). The results demonstrate that our proposed method yielded excellent performance and good generalization ability when trained on a small labeled dataset, facilitating the use of deep learning in carotid ultrasound image analysis and clinical practice. The code of our algorithm is available https://github.com/a610lab/Registration-SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xfy完成签到,获得积分10
3秒前
阳炎完成签到,获得积分10
5秒前
行云流水完成签到,获得积分10
6秒前
7秒前
冷酷尔琴发布了新的文献求助10
11秒前
青水完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
冷酷尔琴完成签到,获得积分10
15秒前
onevip完成签到,获得积分0
17秒前
小莫完成签到 ,获得积分10
19秒前
28秒前
theseus完成签到,获得积分10
29秒前
胡楠完成签到,获得积分10
31秒前
北国雪未消完成签到 ,获得积分10
32秒前
李振博完成签到 ,获得积分10
32秒前
42秒前
雪妮完成签到 ,获得积分10
45秒前
松松发布了新的文献求助20
48秒前
48秒前
iwsaml完成签到 ,获得积分10
48秒前
Caden完成签到 ,获得积分10
51秒前
xmhxpz完成签到,获得积分10
52秒前
was_3完成签到,获得积分10
52秒前
聪慧板凳完成签到,获得积分10
56秒前
1分钟前
buerzi完成签到,获得积分10
1分钟前
魁梧的盼望完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
wzk完成签到,获得积分10
1分钟前
称心翠容完成签到,获得积分10
1分钟前
LaixS完成签到,获得积分10
1分钟前
尊敬代亦发布了新的文献求助10
1分钟前
要笑cc完成签到,获得积分10
1分钟前
青珊发布了新的文献求助10
1分钟前
宣宣宣0733完成签到,获得积分10
1分钟前
俊逸吐司完成签到 ,获得积分10
1分钟前
ttxxcdx完成签到 ,获得积分10
1分钟前
胡质斌完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022