清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bi-objective multi-mode resource-constrained multi-project scheduling using combined NSGA II and Q-learning algorithm

计算机科学 数学优化 分类 蚁群优化算法 算法 遗传算法 粒子群优化 调度(生产过程) 机器学习 数学
作者
Hongbing Yang,Ziyang Wang,Yue Gao,Wei Zhou
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:152: 111201-111201 被引量:12
标识
DOI:10.1016/j.asoc.2023.111201
摘要

Multi-mode resource-constrained multi-project scheduling problem (MRCMPSP) plays a pivotal role in project management, serving as a critical component in production management for Engineering-to-Order manufacturing companies to enhance productivity, reduce costs, and minimize project completion time. This paper investigates the challenging problem of a bi-objective MRCMPSP, considering resource and finish time constraints, and develops a mathematical model to reduce project cycles and achieve better resource load balancing. By leveraging on the independent nature of start time selection for each activity, which aligns with the characteristics of a Markov decision process, we propose a two-layer iterative algorithm that combines the Nondominated Sorting Genetic Algorithm II (i.e., NSGA II) and Q-learning algorithm to solve the model effectively. Hence, the NSGA II algorithm generates mode combinations, while its fitness function employs the Q-learning algorithm to search for optimal activity time selections within each mode. We verify the performance superiority of the proposed algorithm by conducting a comparative analysis against classical approaches, encompassing classical NSGA II, Particle Swarm Optimization, and Ant Colony Optimization algorithms. Furthermore, this study's experimental results therefore unequivocally demonstrate the effectiveness of our algorithm in achieving optimized project scheduling outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动初蓝完成签到 ,获得积分10
13秒前
16秒前
23秒前
jerry完成签到 ,获得积分10
28秒前
40秒前
52秒前
52秒前
neversay4ever完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
TZMY完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
温如军完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
范ER完成签到 ,获得积分10
4分钟前
herpes完成签到 ,获得积分0
4分钟前
脑洞疼应助渣渣采纳,获得10
4分钟前
4分钟前
YifanWang完成签到,获得积分0
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
貔貅完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
John完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293133
求助须知:如何正确求助?哪些是违规求助? 4443412
关于积分的说明 13831150
捐赠科研通 4326975
什么是DOI,文献DOI怎么找? 2375214
邀请新用户注册赠送积分活动 1370555
关于科研通互助平台的介绍 1335258