亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Oil Well Detection under Occlusion in Remote Sensing Images Using the Improved YOLOv5 Model

石油工程 环境科学 分割 计算机科学 人工智能 化石燃料 油田 萃取(化学) 地质学 计算机视觉 遥感 工程类 废物管理 化学 色谱法
作者
Yu Zhang,Lu Bai,Zhibao Wang,Meng Fan,Anna Jurek,Yuqi Zhang,Ying Zhang,Man Zhao,Liangfu Chen
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (24): 5788-5788 被引量:3
标识
DOI:10.3390/rs15245788
摘要

Oil wells play an important role in the extraction of oil and gas, and their future potential extends beyond oil and gas exploitation to include the development of geothermal resources for sustainable power generation. Identifying and detecting oil wells are of paramount importance given the crucial role of oil well distribution in energy planning. In recent years, significant progress has been made in detecting single oil well objects, with recognition accuracy exceeding 90%. However, there are still remaining challenges, particularly with regard to small-scale objects, varying viewing angles, and complex occlusions within the domain of oil well detection. In this work, we created our own dataset, which included 722 images containing 3749 oil well objects in Daqing, Huatugou, Changqing oil field areas in China, and California in the USA. Within this dataset, 2165 objects were unoccluded, 617 were moderately occluded, and 967 objects were severely occluded. To address the challenges in detecting oil wells in complex occlusion scenarios, we propose the YOLOv5s-seg CAM NWD network for object detection and instance segmentation. The experimental results show that our proposed model outperforms YOLOv5 with F1 improvements of 5.4%, 11.6%, and 23.1% observed for unoccluded, moderately occluded, and severely occluded scenarios, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
18秒前
23秒前
王饱饱完成签到 ,获得积分10
26秒前
26秒前
34秒前
彭彭完成签到,获得积分10
35秒前
共享精神应助ceeray23采纳,获得20
37秒前
吃了吃了完成签到,获得积分10
38秒前
大模型应助ceeray23采纳,获得20
40秒前
Yiphy发布了新的文献求助50
40秒前
yyqx发布了新的文献求助10
40秒前
领导范儿应助ceeray23采纳,获得20
44秒前
49秒前
慕青应助科研通管家采纳,获得10
50秒前
ho应助科研通管家采纳,获得10
50秒前
香蕉觅云应助科研通管家采纳,获得10
50秒前
50秒前
ho应助科研通管家采纳,获得10
50秒前
888应助yyqx采纳,获得10
53秒前
汉堡包应助Yiphy采纳,获得50
55秒前
刘xy完成签到,获得积分20
55秒前
1分钟前
耐斯糖完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
丘比特应助璟黎采纳,获得10
1分钟前
孙小球完成签到,获得积分10
1分钟前
气945完成签到,获得积分10
1分钟前
Shawn发布了新的文献求助10
1分钟前
ljl86400完成签到,获得积分10
1分钟前
辞恙发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助卡皮巴拉采纳,获得10
1分钟前
孙小球发布了新的文献求助10
1分钟前
新新新新新发顶刊完成签到 ,获得积分10
1分钟前
1分钟前
CipherSage应助ceeray23采纳,获得20
1分钟前
彭于晏应助ceeray23采纳,获得20
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376343
求助须知:如何正确求助?哪些是违规求助? 4501460
关于积分的说明 14013061
捐赠科研通 4409230
什么是DOI,文献DOI怎么找? 2422111
邀请新用户注册赠送积分活动 1414926
关于科研通互助平台的介绍 1391787