Oil Well Detection under Occlusion in Remote Sensing Images Using the Improved YOLOv5 Model

石油工程 环境科学 分割 计算机科学 人工智能 化石燃料 油田 萃取(化学) 地质学 计算机视觉 遥感 工程类 废物管理 化学 色谱法
作者
Yu Zhang,Lu Bai,Zhibao Wang,Meng Fan,Anna Jurek,Yuqi Zhang,Ying Zhang,Man Zhao,Liangfu Chen
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (24): 5788-5788 被引量:3
标识
DOI:10.3390/rs15245788
摘要

Oil wells play an important role in the extraction of oil and gas, and their future potential extends beyond oil and gas exploitation to include the development of geothermal resources for sustainable power generation. Identifying and detecting oil wells are of paramount importance given the crucial role of oil well distribution in energy planning. In recent years, significant progress has been made in detecting single oil well objects, with recognition accuracy exceeding 90%. However, there are still remaining challenges, particularly with regard to small-scale objects, varying viewing angles, and complex occlusions within the domain of oil well detection. In this work, we created our own dataset, which included 722 images containing 3749 oil well objects in Daqing, Huatugou, Changqing oil field areas in China, and California in the USA. Within this dataset, 2165 objects were unoccluded, 617 were moderately occluded, and 967 objects were severely occluded. To address the challenges in detecting oil wells in complex occlusion scenarios, we propose the YOLOv5s-seg CAM NWD network for object detection and instance segmentation. The experimental results show that our proposed model outperforms YOLOv5 with F1 improvements of 5.4%, 11.6%, and 23.1% observed for unoccluded, moderately occluded, and severely occluded scenarios, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
yznfly应助科研通管家采纳,获得50
1秒前
1秒前
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
渔泽完成签到,获得积分10
2秒前
11完成签到 ,获得积分10
3秒前
行走完成签到,获得积分10
3秒前
慕青应助zmoon采纳,获得10
3秒前
内白应助上将小丁采纳,获得10
3秒前
3秒前
DONG发布了新的文献求助10
4秒前
5秒前
小乐应助Netsky采纳,获得10
5秒前
Bin_Liu发布了新的文献求助10
6秒前
夏小胖发布了新的文献求助10
6秒前
科研通AI6应助复杂的无敌采纳,获得10
6秒前
赵鑫宇完成签到,获得积分20
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
daisy完成签到 ,获得积分10
8秒前
CYF发布了新的文献求助10
8秒前
8秒前
机灵的胡萝卜完成签到,获得积分10
10秒前
852应助水水的采纳,获得30
10秒前
dbaxia完成签到,获得积分10
10秒前
刻苦的映易完成签到 ,获得积分10
10秒前
11秒前
魔幻白柏发布了新的文献求助10
11秒前
11秒前
12秒前
狂野白梅发布了新的文献求助10
12秒前
cqh发布了新的文献求助10
12秒前
明理寒烟完成签到,获得积分20
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508548
求助须知:如何正确求助?哪些是违规求助? 4603695
关于积分的说明 14487234
捐赠科研通 4538072
什么是DOI,文献DOI怎么找? 2486805
邀请新用户注册赠送积分活动 1469382
关于科研通互助平台的介绍 1441636