P487 Automated Scoring of Patient Endoscopy Videos Using Deep Learning Techniques: A Promising Approach for Clinical Trials in Inflammatory Bowel Disease

炎症性肠病 医学 内窥镜检查 疾病 人工智能 临床试验 医学物理学 放射科 内科学 计算机科学
作者
Salvatore Badalamenti,Harendra Sarker,Wei Zhao,Q Bozhao,Etienne Pochet,Roger Trullo,Qihe Tang,Jun Zhang,Annie J. Kruger,Maria Wiekowski
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:18 (Supplement_1): i975-i975
标识
DOI:10.1093/ecco-jcc/jjad212.0617
摘要

Abstract Background Accurate assessment of patient endoscopy videos is crucial for various clinical trials, including those related to inflammatory bowel diseases (IBD). However, manual scoring by trained local and central readers can lead to discrepancies, inconsistencies, and logistical challenges. To address these issues, we devised a novel approach utilizing deep learning techniques to automate the analysis, parsing, and scoring of patient endoscopy videos. Our objectives were to reduce human error/variability, accelerate endoscopic scoring by enhancing read accuracy, and lower clinical trial cost. Methods We developed and trained deep learning models using a large dataset of labeled patient endoscopy images. The models were designed to predict the Mayo endoscopic score (MES), which serves as a standardized measure of disease severity in IBD. Our approach developed convolutional neural networks (CNNs) to extract features from raw video data and processed them into meaningful patterns. The models were optimized using transfer learning and validated on external endoscopy video datasets through rigorous testing protocols. Results Using an iterative process, we developed two sets (total 4) of proof-of-concept (POC) Artificial Intelligence (AI) models using frame level datasets from endoscopy videos. First, quality was assessed by the blur detection model, currently performing at > 90% accuracy, and the bowel preparation model, performing at > 95% accuracy compared to the labels provided by human annotators. Second, MES sub-score prediction currently performs with >75% accuracy for 4-level Mayo sub-score prediction and >90% accuracy in predicting advanced MES scores (2 or higher compared with consensus score derived from 3 annotators). Conclusion The presented study highlights the potential of deep learning techniques in revolutionizing the assessment of patient endoscopy videos in clinical trials for IBD. Automating the endoscopic scoring process enables faster, more accurate, and cost-efficient evaluations, ultimately leading to better detection of patient outcomes. Future research directions involve further refining the models to enhance their performance and expand their application to other gastrointestinal diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xbchen发布了新的文献求助10
1秒前
星星点灯发布了新的文献求助10
1秒前
海4015发布了新的文献求助10
2秒前
2秒前
苹果忆彤完成签到,获得积分20
3秒前
LIJinlin完成签到,获得积分10
4秒前
今后应助跳跃雯采纳,获得10
5秒前
6秒前
6秒前
琳科研_文献完成签到,获得积分20
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
xzy998应助科研通管家采纳,获得20
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得30
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
温暖发布了新的文献求助10
10秒前
海王星发布了新的文献求助10
11秒前
12秒前
13秒前
风中盼易完成签到 ,获得积分10
13秒前
李健应助le采纳,获得10
18秒前
跳跃雯发布了新的文献求助10
18秒前
月潮共生完成签到 ,获得积分10
20秒前
超级的雪糕完成签到 ,获得积分10
25秒前
26秒前
跳跃雯完成签到,获得积分10
29秒前
Mei完成签到,获得积分10
34秒前
大胆小熊猫完成签到 ,获得积分10
34秒前
35秒前
yy发布了新的文献求助30
40秒前
orixero应助susu采纳,获得10
40秒前
42秒前
隐形曼青应助小田心采纳,获得10
46秒前
hdd发布了新的文献求助10
46秒前
47秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340648
求助须知:如何正确求助?哪些是违规求助? 2968587
关于积分的说明 8634210
捐赠科研通 2648088
什么是DOI,文献DOI怎么找? 1450009
科研通“疑难数据库(出版商)”最低求助积分说明 671632
邀请新用户注册赠送积分活动 660693