P487 Automated Scoring of Patient Endoscopy Videos Using Deep Learning Techniques: A Promising Approach for Clinical Trials in Inflammatory Bowel Disease

炎症性肠病 医学 内窥镜检查 疾病 人工智能 临床试验 医学物理学 放射科 内科学 计算机科学
作者
Salvatore Badalamenti,Harendra Sarker,Wei Zhao,Q Bozhao,Etienne Pochet,Roger Trullo,Qihe Tang,Jun Zhang,Annie J. Kruger,Maria Wiekowski
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:18 (Supplement_1): i975-i975
标识
DOI:10.1093/ecco-jcc/jjad212.0617
摘要

Abstract Background Accurate assessment of patient endoscopy videos is crucial for various clinical trials, including those related to inflammatory bowel diseases (IBD). However, manual scoring by trained local and central readers can lead to discrepancies, inconsistencies, and logistical challenges. To address these issues, we devised a novel approach utilizing deep learning techniques to automate the analysis, parsing, and scoring of patient endoscopy videos. Our objectives were to reduce human error/variability, accelerate endoscopic scoring by enhancing read accuracy, and lower clinical trial cost. Methods We developed and trained deep learning models using a large dataset of labeled patient endoscopy images. The models were designed to predict the Mayo endoscopic score (MES), which serves as a standardized measure of disease severity in IBD. Our approach developed convolutional neural networks (CNNs) to extract features from raw video data and processed them into meaningful patterns. The models were optimized using transfer learning and validated on external endoscopy video datasets through rigorous testing protocols. Results Using an iterative process, we developed two sets (total 4) of proof-of-concept (POC) Artificial Intelligence (AI) models using frame level datasets from endoscopy videos. First, quality was assessed by the blur detection model, currently performing at > 90% accuracy, and the bowel preparation model, performing at > 95% accuracy compared to the labels provided by human annotators. Second, MES sub-score prediction currently performs with >75% accuracy for 4-level Mayo sub-score prediction and >90% accuracy in predicting advanced MES scores (2 or higher compared with consensus score derived from 3 annotators). Conclusion The presented study highlights the potential of deep learning techniques in revolutionizing the assessment of patient endoscopy videos in clinical trials for IBD. Automating the endoscopic scoring process enables faster, more accurate, and cost-efficient evaluations, ultimately leading to better detection of patient outcomes. Future research directions involve further refining the models to enhance their performance and expand their application to other gastrointestinal diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小金发布了新的文献求助10
1秒前
香蕉觅云应助哈哈哈采纳,获得10
1秒前
LKC完成签到,获得积分10
1秒前
怡然的寇发布了新的文献求助10
1秒前
科研通AI2S应助太阳下山采纳,获得50
1秒前
小羊发布了新的文献求助10
2秒前
LB发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
Orange应助cc采纳,获得10
6秒前
orixero应助中科路2020采纳,获得30
6秒前
pinging完成签到,获得积分10
8秒前
科研通AI6应助拼搏小丸子采纳,获得10
8秒前
9秒前
10秒前
hulei完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助50
10秒前
11秒前
11秒前
Libra发布了新的文献求助10
11秒前
充电宝应助怡然的寇采纳,获得10
12秒前
12秒前
科研通AI5应助LB采纳,获得10
12秒前
nannan发布了新的文献求助10
13秒前
鹿鸣鱼跃完成签到 ,获得积分10
13秒前
14秒前
小羊完成签到,获得积分10
14秒前
HDrinnk完成签到,获得积分10
15秒前
15秒前
16秒前
hulei发布了新的文献求助10
16秒前
SHDeathlock发布了新的文献求助20
16秒前
科研通AI5应助酷酷的涵蕾采纳,获得10
16秒前
韶邑发布了新的文献求助10
18秒前
19秒前
creNdro发布了新的文献求助10
19秒前
火星上的夏青给火星上的夏青的求助进行了留言
19秒前
黄诺完成签到 ,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012268
求助须知:如何正确求助?哪些是违规求助? 4253594
关于积分的说明 13254851
捐赠科研通 4056369
什么是DOI,文献DOI怎么找? 2218666
邀请新用户注册赠送积分活动 1228332
关于科研通互助平台的介绍 1150778