亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

P487 Automated Scoring of Patient Endoscopy Videos Using Deep Learning Techniques: A Promising Approach for Clinical Trials in Inflammatory Bowel Disease

炎症性肠病 医学 内窥镜检查 疾病 人工智能 临床试验 医学物理学 放射科 内科学 计算机科学
作者
Salvatore Badalamenti,Harendra Sarker,Wei Zhao,Q Bozhao,Etienne Pochet,Roger Trullo,Qihe Tang,Jun Zhang,Annie J. Kruger,Maria Wiekowski
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:18 (Supplement_1): i975-i975
标识
DOI:10.1093/ecco-jcc/jjad212.0617
摘要

Abstract Background Accurate assessment of patient endoscopy videos is crucial for various clinical trials, including those related to inflammatory bowel diseases (IBD). However, manual scoring by trained local and central readers can lead to discrepancies, inconsistencies, and logistical challenges. To address these issues, we devised a novel approach utilizing deep learning techniques to automate the analysis, parsing, and scoring of patient endoscopy videos. Our objectives were to reduce human error/variability, accelerate endoscopic scoring by enhancing read accuracy, and lower clinical trial cost. Methods We developed and trained deep learning models using a large dataset of labeled patient endoscopy images. The models were designed to predict the Mayo endoscopic score (MES), which serves as a standardized measure of disease severity in IBD. Our approach developed convolutional neural networks (CNNs) to extract features from raw video data and processed them into meaningful patterns. The models were optimized using transfer learning and validated on external endoscopy video datasets through rigorous testing protocols. Results Using an iterative process, we developed two sets (total 4) of proof-of-concept (POC) Artificial Intelligence (AI) models using frame level datasets from endoscopy videos. First, quality was assessed by the blur detection model, currently performing at > 90% accuracy, and the bowel preparation model, performing at > 95% accuracy compared to the labels provided by human annotators. Second, MES sub-score prediction currently performs with >75% accuracy for 4-level Mayo sub-score prediction and >90% accuracy in predicting advanced MES scores (2 or higher compared with consensus score derived from 3 annotators). Conclusion The presented study highlights the potential of deep learning techniques in revolutionizing the assessment of patient endoscopy videos in clinical trials for IBD. Automating the endoscopic scoring process enables faster, more accurate, and cost-efficient evaluations, ultimately leading to better detection of patient outcomes. Future research directions involve further refining the models to enhance their performance and expand their application to other gastrointestinal diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
ceeray23发布了新的文献求助20
14秒前
20秒前
三三完成签到,获得积分10
25秒前
lf发布了新的文献求助10
27秒前
JiangYifan完成签到 ,获得积分10
29秒前
桐桐应助Jack采纳,获得10
31秒前
qiuqiuqiuqiu完成签到 ,获得积分10
35秒前
38秒前
qiuqiuqiuqiu关注了科研通微信公众号
39秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
高数数完成签到 ,获得积分10
47秒前
我是老大应助rayyya采纳,获得30
47秒前
48秒前
田様应助Tonyzad采纳,获得10
54秒前
57秒前
58秒前
rayyya完成签到,获得积分20
1分钟前
酷波er应助kkkxzl采纳,获得10
1分钟前
Jack发布了新的文献求助10
1分钟前
1分钟前
kkkxzl完成签到,获得积分10
1分钟前
侃侃完成签到,获得积分10
1分钟前
kkkxzl发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
有且仅有完成签到 ,获得积分10
1分钟前
乐乐应助紧张的皮皮虾采纳,获得10
1分钟前
WK完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
方的圆完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
紧张的皮皮虾完成签到,获得积分10
2分钟前
文静的峻熙完成签到,获得积分10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976628
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204575
捐赠科研通 3257428
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613