P487 Automated Scoring of Patient Endoscopy Videos Using Deep Learning Techniques: A Promising Approach for Clinical Trials in Inflammatory Bowel Disease

炎症性肠病 医学 内窥镜检查 疾病 人工智能 临床试验 医学物理学 放射科 内科学 计算机科学
作者
Salvatore Badalamenti,Harendra Sarker,Wei Zhao,Q Bozhao,Etienne Pochet,Roger Trullo,Qihe Tang,Jun Zhang,Annie J. Kruger,Maria Wiekowski
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:18 (Supplement_1): i975-i975
标识
DOI:10.1093/ecco-jcc/jjad212.0617
摘要

Abstract Background Accurate assessment of patient endoscopy videos is crucial for various clinical trials, including those related to inflammatory bowel diseases (IBD). However, manual scoring by trained local and central readers can lead to discrepancies, inconsistencies, and logistical challenges. To address these issues, we devised a novel approach utilizing deep learning techniques to automate the analysis, parsing, and scoring of patient endoscopy videos. Our objectives were to reduce human error/variability, accelerate endoscopic scoring by enhancing read accuracy, and lower clinical trial cost. Methods We developed and trained deep learning models using a large dataset of labeled patient endoscopy images. The models were designed to predict the Mayo endoscopic score (MES), which serves as a standardized measure of disease severity in IBD. Our approach developed convolutional neural networks (CNNs) to extract features from raw video data and processed them into meaningful patterns. The models were optimized using transfer learning and validated on external endoscopy video datasets through rigorous testing protocols. Results Using an iterative process, we developed two sets (total 4) of proof-of-concept (POC) Artificial Intelligence (AI) models using frame level datasets from endoscopy videos. First, quality was assessed by the blur detection model, currently performing at > 90% accuracy, and the bowel preparation model, performing at > 95% accuracy compared to the labels provided by human annotators. Second, MES sub-score prediction currently performs with >75% accuracy for 4-level Mayo sub-score prediction and >90% accuracy in predicting advanced MES scores (2 or higher compared with consensus score derived from 3 annotators). Conclusion The presented study highlights the potential of deep learning techniques in revolutionizing the assessment of patient endoscopy videos in clinical trials for IBD. Automating the endoscopic scoring process enables faster, more accurate, and cost-efficient evaluations, ultimately leading to better detection of patient outcomes. Future research directions involve further refining the models to enhance their performance and expand their application to other gastrointestinal diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助handsomecat采纳,获得10
刚刚
刚刚
李雪完成签到,获得积分10
1秒前
1秒前
sv发布了新的文献求助10
3秒前
小田完成签到,获得积分10
3秒前
茶茶完成签到,获得积分20
3秒前
苏兴龙完成签到,获得积分10
3秒前
坚强的亦云-333完成签到,获得积分10
3秒前
Ava应助dan1029采纳,获得10
4秒前
4秒前
4秒前
奶糖最可爱完成签到,获得积分10
5秒前
5秒前
mojomars发布了新的文献求助10
6秒前
幽壑之潜蛟应助茶茶采纳,获得10
6秒前
7秒前
7秒前
7秒前
迅速海云完成签到,获得积分10
7秒前
sjxx发布了新的文献求助10
7秒前
7秒前
乐乐应助Rachel采纳,获得10
8秒前
8秒前
8秒前
天天快乐应助孤独的珩采纳,获得10
9秒前
帅气鹭洋发布了新的文献求助20
9秒前
10秒前
孙悦发布了新的文献求助10
10秒前
知性的绮兰完成签到,获得积分10
10秒前
10秒前
11秒前
Zzzoey完成签到,获得积分10
12秒前
12秒前
12秒前
英姑应助桂魄采纳,获得10
12秒前
12秒前
流北爷发布了新的文献求助10
13秒前
开心完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794