锌
氧化锰
锰
离子
化学
兴奋剂
水溶液
无机化学
钾
材料科学
光电子学
有机化学
作者
Yang Li,Xiaoxu Liu,Tianyi Ji,Man Zhang,Xueru Yan,Mengjie Yao,Dawei Sheng,Shaodong Li,Peipei Ren,Zexiang Shen
标识
DOI:10.1016/j.cclet.2024.109551
摘要
α-MnO2 is a potential positive electrode material for aqueous zinc-ion batteries, but its electrochemical performance of zinc storage requires further improvement. In this paper, potassium ion-doped manganese dioxide nanoscrolls (K-MnO2) with oxygen vacancy were synthesized by a one-step hydrothermal method. It was observed that the electrochemical specific capacity was 250.9 mAh/g at a current density of 0.2 C, which was better than the existing commercial α-MnO2. At a high current of 1 C, these batteries demonstrate improved cycle stability. Synchrotron radiation and other experiments as well as DFT theoretical calculations provided additional evidence that K doping was efficient in regulating the metal bond type and the mean charge regulation of covalent bonds with oxygen atoms in MnO2. When Mn-O and Mn-K bonds are present, K-MnO2 showed outstanding adsorption of Zn2+ and further enhanced the Zn2+ embedding process. Simultaneously, oxygen defects caused by doping boosted the development of the nanoscroll structure, leading to an increase in active sites available for electrochemical reactions and subsequently enhancing the electrical conductivity of α-MnO2. This study exhibits the potential of optimizing materials based on manganese with the introduction of a potassium doping strategy, resulting in improved performance for aquatic zinc-ion batteries, and presents novel perspectives for related research.
科研通智能强力驱动
Strongly Powered by AbleSci AI