变压器
可扩展性
像素
计算机科学
沙漏
人工智能
灰度
高分辨率
图像分辨率
计算机视觉
建筑
模式识别(心理学)
电气工程
电压
物理
工程类
地质学
艺术
视觉艺术
数据库
遥感
天文
作者
Katherine Crowson,Stefan Andreas Baumann,A. C. Birch,Tanishq Abraham,David L. Kaplan,Enrico Shippole
出处
期刊:Cornell University - arXiv
日期:2024-01-01
标识
DOI:10.48550/arxiv.2401.11605
摘要
We present the Hourglass Diffusion Transformer (HDiT), an image generative model that exhibits linear scaling with pixel count, supporting training at high-resolution (e.g. $1024 \times 1024$) directly in pixel-space. Building on the Transformer architecture, which is known to scale to billions of parameters, it bridges the gap between the efficiency of convolutional U-Nets and the scalability of Transformers. HDiT trains successfully without typical high-resolution training techniques such as multiscale architectures, latent autoencoders or self-conditioning. We demonstrate that HDiT performs competitively with existing models on ImageNet $256^2$, and sets a new state-of-the-art for diffusion models on FFHQ-$1024^2$.
科研通智能强力驱动
Strongly Powered by AbleSci AI