Multi-Physics Simulation for Morphology Design of Si Anode

阳极 形态学(生物学) 计算机科学 材料科学 物理 地质学 电极 古生物学 量子力学
作者
Parth Bansal,Yumeng Li
标识
DOI:10.1115/imece2023-113107
摘要

Abstract Due to a constant increase in the usage of portable battery power storage and delivery systems, there is a constant need for innovation in the area of battery design. One such possible innovation is the use of Silicon (Si) as the anode material in Lithium-Ion Batteries (LIBs). While Si is a much better anode material than the traditionally used graphite anode, its usage comes with its own issues. The intercalating mechanism in Si anodes for Li ion storage, causes an increase in the specific capacity of battery along with significant variation in the volume of Si during the charge/discharge cycling. Volumetric variations of up to 300% are observed during the lithiation/delithiation in the Si anode which results in the development of massive internal stresses in the anode. These internal stresses are observed to cause delamination of the anode from the metal substrate and also the cracking within the anode material itself, which ultimately decreases the capacity of the battery. A possible solution to this problem is to design the morphology of nickel backbones in Si anode to reduce the intensity of the internal stresses and therefore the resulted failure and capacity degradation. In this paper, multiphysics simulation based on finite element analysis is developed to understand and quantify the effect of the morphology of nickel backbone on the lithiation induced stress in the Si anode. A convex and concave anode structure, along with a flat design for comparison, will be simulated for different lithiation/delithiation rates, using the FE model and the FE analysis will be conducted to investigate the changes in the corresponding stresses in Si layer, the cracking pattern and the delaminated area. It is expected the developed multiphysics FE simulations can inform the morphological design of anode to minimize the mechanical degradation and reduce capability loss.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助rpe采纳,获得10
刚刚
hhh应助666采纳,获得10
1秒前
1秒前
传奇3应助高高梦山采纳,获得10
2秒前
小龙包发布了新的文献求助10
2秒前
李爱国应助Z.one采纳,获得10
2秒前
灿烂发布了新的文献求助30
2秒前
2秒前
4秒前
雨晴完成签到,获得积分20
4秒前
4秒前
mc完成签到,获得积分10
5秒前
开心的若烟完成签到,获得积分10
5秒前
高源伯发布了新的文献求助10
5秒前
好吧不是发布了新的文献求助10
6秒前
谨慎山彤完成签到 ,获得积分10
6秒前
小李不爱搞科研完成签到,获得积分10
6秒前
hhh完成签到,获得积分10
8秒前
8秒前
朴素雁山完成签到,获得积分20
9秒前
frank完成签到 ,获得积分10
9秒前
基金咔咔中完成签到,获得积分10
10秒前
loliya发布了新的文献求助10
10秒前
慕青应助不踩油门采纳,获得10
11秒前
zbylaosiji完成签到,获得积分10
11秒前
怕黑的无招完成签到,获得积分10
11秒前
FishBoooooo完成签到,获得积分20
12秒前
Lucas应助玲玲采纳,获得10
12秒前
无味完成签到 ,获得积分10
12秒前
Jadie完成签到,获得积分10
13秒前
rpe发布了新的文献求助10
14秒前
14秒前
搜集达人应助mysgmmdnz采纳,获得10
14秒前
15秒前
vvvvyl应助红油曲奇采纳,获得10
15秒前
6chm发布了新的文献求助10
16秒前
无限的汝燕完成签到 ,获得积分10
16秒前
小龙包完成签到,获得积分20
17秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469715
求助须知:如何正确求助?哪些是违规求助? 3062911
关于积分的说明 9080378
捐赠科研通 2753084
什么是DOI,文献DOI怎么找? 1510742
邀请新用户注册赠送积分活动 697987
科研通“疑难数据库(出版商)”最低求助积分说明 697975