Blockchain and Digital Asset Transactions-Based Carbon Emissions Trading Scheme for Industrial Internet of Things

块链 资产(计算机安全) 方案(数学) 互联网 排放交易 工业互联网 物联网 计算机科学 业务 计算机安全 环境经济学 温室气体 万维网 经济 数学分析 生态学 数学 生物
作者
Fan Yang,Yanan Qiao,Junge Bo,Lvyang Ye,Mohammad Zoynul Abedin
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tii.2024.3354338
摘要

Carbon emissions trading has become an increasingly hot topic nowadays, due to the fact that how to reduce carbon emissions has been a common effort of different countries. However, traditional methods are plagued by issues, such as inadequate privacy protection mechanisms and the challenge of representing data assets in a comprehensive form using blockchain data models. In this article, we propose carbon emissions trading scheme (CETS), a secure carbon emissions trading system using blockchain combined with digital assets transactions. The proposed CETS scheme enhances the performance of models for carbon emissions trading by prioritizing the efficiency, privacy, and traceability of carbon emissions trading. Simultaneously, it improves the consistency of digital asset trading throughout the chain. First, we propose a dual-blockchain-based method for storing and tracing carbon emission data, which ensures the privacy of the data. Next, we propose algorithms for transaction of digital assets in carbon emission trading scheme, which include digital asset uniqueness algorithm, serializable mechanism, and cross-chain algorithm of digital assets. Finally, we propose an automated machine learning pipeline approach based on the carbon trading price forecasting model construction method, which can provide efficient, automatic price forecasting model construction and training. The experimental results prove that our proposed carbon emission trading system can provide an efficient and stable carbon emission trading solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单的八宝粥应助pluto采纳,获得10
刚刚
刚刚
逆蝶完成签到,获得积分10
1秒前
2秒前
嗯嗯嗯完成签到 ,获得积分10
3秒前
4秒前
简单的八宝粥应助rajvsvj采纳,获得10
4秒前
脑洞疼应助科研小趴菜采纳,获得10
4秒前
beargo发布了新的文献求助10
5秒前
6秒前
可爱的函函应助行隐采纳,获得10
6秒前
小美酱发布了新的文献求助10
6秒前
6秒前
。。。发布了新的文献求助10
7秒前
9秒前
Siyu发布了新的文献求助10
10秒前
异梦发布了新的文献求助10
10秒前
zhjp发布了新的文献求助10
11秒前
清脆的诗兰完成签到 ,获得积分10
11秒前
BaiX完成签到,获得积分10
12秒前
hz发布了新的文献求助10
13秒前
yyds给咩咩的求助进行了留言
14秒前
甜蜜的世德完成签到,获得积分10
14秒前
18秒前
19秒前
21秒前
22秒前
23秒前
粱乘风完成签到,获得积分20
23秒前
省略号完成签到 ,获得积分10
23秒前
27秒前
XZY发布了新的文献求助10
27秒前
kuai0Yu发布了新的文献求助30
28秒前
30秒前
12完成签到 ,获得积分10
30秒前
酷波er应助Beckyyy采纳,获得10
32秒前
wuhu发布了新的文献求助10
32秒前
ling22发布了新的文献求助10
33秒前
请叫我表情帝完成签到 ,获得积分10
33秒前
凛凛发布了新的文献求助10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458771
求助须知:如何正确求助?哪些是违规求助? 3053518
关于积分的说明 9036928
捐赠科研通 2742726
什么是DOI,文献DOI怎么找? 1504524
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519