Multi-agent Task Allocation based on NSGA-II in a Warehouse Environment

仓库 任务(项目管理) 计算机科学 数据仓库 运筹学 业务 数据库 数学 工程类 系统工程 营销
作者
Yunlong Peng,An Li,Wei Li,Huamao Peng
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3895920/v1
摘要

Abstract Multi-agent systems (MAS) can be widely applied in warehouse management to enhance logistics operation efficiency, reduce costs, and improve decision-making. In a MAS, robots can serve as agents to optimize the routing and scheduling of shipments, reducing delivery times and improving customer satisfaction in the warehouse environment. It is widely recognized that the more robots are deployed, the higher efficiency logistics operation will be. However, with the increasing number of robots, a growing number of challenges emerge, particularly in the domain of task allocation—a process aimed at assigning tasks to a group of robots to achieve a common goal. The task allocation often requires multi-objective optimization to balance various factors. This paper presents an efficient multi-agent task allocation algorithm that can handle both static and dynamic task allocation. To handle static tasks, the paper employs the NSGA2 algorithm, which can handle multi-objective optimization, to efficiently generate scheduling schemes and assign agents in the warehouse to execute tasks. For dynamic tasks, an auction-bid scheme is employed to quickly respond to task changes and ensure the efficient completion of the task. Meanwhile, we also design an effective scheme traffic-rules based to sufficiently avoid the robot collision. The simulation results demonstrated the capability of our algorithm to efficiently allocate tasks and plan the shortest path based on A*. Moreover, the algorithm effectively minimizes both the sum of the travel costs over all robots and the maximum individual travel cost over all robots simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
2秒前
苏卿应助光亮笑柳采纳,获得10
2秒前
upupup发布了新的文献求助10
2秒前
周周没烦恼完成签到,获得积分10
3秒前
量子发布了新的文献求助20
3秒前
笨笨歌曲完成签到,获得积分10
4秒前
4秒前
-sci-发布了新的文献求助10
4秒前
4秒前
Jasper应助zhangzhisenn采纳,获得10
4秒前
朱佳琪完成签到,获得积分10
4秒前
一条咸鱼发布了新的文献求助10
5秒前
5秒前
5秒前
放羊的小陌完成签到,获得积分10
5秒前
5秒前
JamesPei应助幸福的kc采纳,获得10
6秒前
1111111发布了新的文献求助10
6秒前
6秒前
Yan发布了新的文献求助10
7秒前
8秒前
英姑应助司马惜儿采纳,获得10
8秒前
Ava应助n0rthstar采纳,获得10
8秒前
henryoy发布了新的文献求助10
8秒前
9秒前
勤劳破茧发布了新的文献求助10
9秒前
曾曾发布了新的文献求助10
9秒前
要减肥的天寿完成签到,获得积分10
9秒前
成就芒果tv完成签到,获得积分10
10秒前
-sci-完成签到,获得积分10
10秒前
小星星发布了新的文献求助10
10秒前
一条咸鱼完成签到,获得积分10
10秒前
77777发布了新的文献求助10
10秒前
C·麦塔芬完成签到,获得积分10
12秒前
SONG发布了新的文献求助10
12秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135702
求助须知:如何正确求助?哪些是违规求助? 2786585
关于积分的说明 7778267
捐赠科研通 2442686
什么是DOI,文献DOI怎么找? 1298616
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866