Tire noise prediction based on transfer learning and multi-modal fusion

情态动词 噪音(视频) 融合 计算机科学 人工智能 声学 材料科学 物理 语言学 哲学 图像(数学) 高分子化学
作者
Chen Liang,Mingrui Hao,Ya‐Ching Shen,H. H. Li,Junwei Fan
标识
DOI:10.1177/09544070241232606
摘要

Vehicle traffic noise has become an important factor in urban noise pollution. With the increase in the number of new-energy vehicles, the current situation of tire/road noise as one of the main noise sources of automobiles is becoming increasingly prominent. Tire noise prediction is the basis for optimizing the design of low-noise tires, providing a reference basis for tire design with low-noise performance. This paper used deep learning methods to predict the noise performance of TBR radial tires. We obtained descriptive statistical features of tire structure and tread pattern images as input to the model, and used measured tire/road noise as output, then we constructed a multi-modal tire noise dataset. Comparing the prediction performance of three pre-trained transfer models such as Resnet18, VGG16, and Inception V3 on the tire pattern images, the Resnet18 had the best prediction effect. Resnet18 was selected as a feature extractor to extract image features, which fuse with the tire structural features at the feature level. The experiment constructed the TLMF-TRNP model to predict tire noise. The experimental results of the TLMF-TRNP model indicated that RMSE, MAE, and R 2 were 0.1337, 0.0948, and 0.9864 respectively, achieving ideal prediction accuracy on a small-scale tire noise dataset and controlling the absolute error of the test tires within ±0.4 dB effectively. An accurate tire noise prediction model will provide a theoretical basis for tire design with low noise tires.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助无误采纳,获得10
2秒前
万能图书馆应助高强采纳,获得10
2秒前
3秒前
hqz完成签到,获得积分10
3秒前
abtx314关注了科研通微信公众号
4秒前
不想太多完成签到,获得积分10
5秒前
lala完成签到,获得积分10
5秒前
6秒前
6秒前
雪山飞鹰发布了新的文献求助10
6秒前
在水一方应助静1111采纳,获得10
8秒前
称心冬云完成签到,获得积分10
8秒前
9秒前
10秒前
bkagyin应助tanjing0912采纳,获得10
10秒前
happy完成签到,获得积分10
11秒前
Sli完成签到,获得积分10
12秒前
HE发布了新的文献求助10
13秒前
xzz发布了新的文献求助10
14秒前
开心臭屁小牛牛完成签到 ,获得积分10
16秒前
YiWei发布了新的文献求助10
16秒前
烟花应助know采纳,获得10
17秒前
传奇3应助雪山飞鹰采纳,获得10
17秒前
19秒前
20秒前
烟花应助emilybei采纳,获得10
20秒前
21秒前
22秒前
在水一方应助yin采纳,获得10
23秒前
典雅又夏完成签到,获得积分10
24秒前
周钦完成签到,获得积分10
24秒前
无误发布了新的文献求助10
25秒前
yuko应助科研通管家采纳,获得10
26秒前
Orange应助科研通管家采纳,获得10
26秒前
Greta应助科研通管家采纳,获得10
26秒前
隐形曼青应助科研通管家采纳,获得10
26秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
26秒前
威武从霜发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014