Tire noise prediction based on transfer learning and multi-modal fusion

情态动词 噪音(视频) 融合 计算机科学 人工智能 声学 材料科学 物理 语言学 哲学 高分子化学 图像(数学)
作者
Chen Liang,Mingrui Hao,Ya‐Ching Shen,H. H. Li,Junwei Fan
标识
DOI:10.1177/09544070241232606
摘要

Vehicle traffic noise has become an important factor in urban noise pollution. With the increase in the number of new-energy vehicles, the current situation of tire/road noise as one of the main noise sources of automobiles is becoming increasingly prominent. Tire noise prediction is the basis for optimizing the design of low-noise tires, providing a reference basis for tire design with low-noise performance. This paper used deep learning methods to predict the noise performance of TBR radial tires. We obtained descriptive statistical features of tire structure and tread pattern images as input to the model, and used measured tire/road noise as output, then we constructed a multi-modal tire noise dataset. Comparing the prediction performance of three pre-trained transfer models such as Resnet18, VGG16, and Inception V3 on the tire pattern images, the Resnet18 had the best prediction effect. Resnet18 was selected as a feature extractor to extract image features, which fuse with the tire structural features at the feature level. The experiment constructed the TLMF-TRNP model to predict tire noise. The experimental results of the TLMF-TRNP model indicated that RMSE, MAE, and R 2 were 0.1337, 0.0948, and 0.9864 respectively, achieving ideal prediction accuracy on a small-scale tire noise dataset and controlling the absolute error of the test tires within ±0.4 dB effectively. An accurate tire noise prediction model will provide a theoretical basis for tire design with low noise tires.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳄鱼应助Fengzhen007采纳,获得10
刚刚
刚刚
1秒前
蛙蛙完成签到,获得积分10
2秒前
LINHY完成签到,获得积分10
3秒前
pandarion发布了新的文献求助10
4秒前
4秒前
LKC完成签到 ,获得积分10
4秒前
ttt完成签到,获得积分10
5秒前
小徐发布了新的文献求助10
5秒前
jasmine完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
木乙完成签到,获得积分10
6秒前
7秒前
kai完成签到,获得积分10
7秒前
7秒前
刘胜敏发布了新的文献求助10
7秒前
8秒前
Orange应助大气靳采纳,获得10
9秒前
koi发布了新的文献求助10
10秒前
晒鱼干的大喵完成签到,获得积分20
10秒前
bbhk完成签到,获得积分10
11秒前
公龟应助科研通管家采纳,获得10
11秒前
Maestro_S应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
arniu2008应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
ze完成签到,获得积分10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
12秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
spc68应助科研通管家采纳,获得10
12秒前
xumou完成签到 ,获得积分10
12秒前
田様应助科研通管家采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718086
求助须知:如何正确求助?哪些是违规求助? 5250429
关于积分的说明 15284546
捐赠科研通 4868357
什么是DOI,文献DOI怎么找? 2614122
邀请新用户注册赠送积分活动 1564011
关于科研通互助平台的介绍 1521455