Tire noise prediction based on transfer learning and multi-modal fusion

情态动词 噪音(视频) 融合 计算机科学 人工智能 声学 材料科学 物理 语言学 哲学 高分子化学 图像(数学)
作者
Chen Liang,Mingrui Hao,Ya‐Ching Shen,H. H. Li,Junwei Fan
标识
DOI:10.1177/09544070241232606
摘要

Vehicle traffic noise has become an important factor in urban noise pollution. With the increase in the number of new-energy vehicles, the current situation of tire/road noise as one of the main noise sources of automobiles is becoming increasingly prominent. Tire noise prediction is the basis for optimizing the design of low-noise tires, providing a reference basis for tire design with low-noise performance. This paper used deep learning methods to predict the noise performance of TBR radial tires. We obtained descriptive statistical features of tire structure and tread pattern images as input to the model, and used measured tire/road noise as output, then we constructed a multi-modal tire noise dataset. Comparing the prediction performance of three pre-trained transfer models such as Resnet18, VGG16, and Inception V3 on the tire pattern images, the Resnet18 had the best prediction effect. Resnet18 was selected as a feature extractor to extract image features, which fuse with the tire structural features at the feature level. The experiment constructed the TLMF-TRNP model to predict tire noise. The experimental results of the TLMF-TRNP model indicated that RMSE, MAE, and R 2 were 0.1337, 0.0948, and 0.9864 respectively, achieving ideal prediction accuracy on a small-scale tire noise dataset and controlling the absolute error of the test tires within ±0.4 dB effectively. An accurate tire noise prediction model will provide a theoretical basis for tire design with low noise tires.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heady发布了新的文献求助10
刚刚
LLM发布了新的文献求助10
刚刚
hui关闭了hui文献求助
刚刚
无极微光应助派大星采纳,获得20
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
大模型应助FlipFlops采纳,获得10
1秒前
坚强的元珊应助猪猪hero采纳,获得20
1秒前
luanzhaohui发布了新的文献求助50
2秒前
jia完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
向北发布了新的文献求助20
2秒前
kimchiyak给咯咯咯的求助进行了留言
3秒前
4秒前
4秒前
外向的初曼完成签到,获得积分10
4秒前
NexusExplorer应助wuran采纳,获得10
4秒前
复杂的梦易完成签到,获得积分10
5秒前
FashionBoy应助zhou采纳,获得10
5秒前
柳博超完成签到,获得积分10
6秒前
KHromance发布了新的文献求助10
7秒前
duoduo发布了新的文献求助20
7秒前
unicorn完成签到,获得积分10
7秒前
LLM完成签到,获得积分10
8秒前
ss发布了新的文献求助10
8秒前
跳跃完成签到,获得积分10
8秒前
jksg发布了新的文献求助10
9秒前
打打应助熙可檬采纳,获得10
10秒前
10秒前
传奇3应助pure采纳,获得10
11秒前
彩色的曼柔完成签到 ,获得积分10
11秒前
enen发布了新的文献求助10
11秒前
魔幻的翠容完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320