Tire noise prediction based on transfer learning and multi-modal fusion

情态动词 噪音(视频) 融合 计算机科学 人工智能 声学 材料科学 物理 语言学 哲学 高分子化学 图像(数学)
作者
Chen Liang,Mingrui Hao,Ya‐Ching Shen,H. H. Li,Junwei Fan
标识
DOI:10.1177/09544070241232606
摘要

Vehicle traffic noise has become an important factor in urban noise pollution. With the increase in the number of new-energy vehicles, the current situation of tire/road noise as one of the main noise sources of automobiles is becoming increasingly prominent. Tire noise prediction is the basis for optimizing the design of low-noise tires, providing a reference basis for tire design with low-noise performance. This paper used deep learning methods to predict the noise performance of TBR radial tires. We obtained descriptive statistical features of tire structure and tread pattern images as input to the model, and used measured tire/road noise as output, then we constructed a multi-modal tire noise dataset. Comparing the prediction performance of three pre-trained transfer models such as Resnet18, VGG16, and Inception V3 on the tire pattern images, the Resnet18 had the best prediction effect. Resnet18 was selected as a feature extractor to extract image features, which fuse with the tire structural features at the feature level. The experiment constructed the TLMF-TRNP model to predict tire noise. The experimental results of the TLMF-TRNP model indicated that RMSE, MAE, and R 2 were 0.1337, 0.0948, and 0.9864 respectively, achieving ideal prediction accuracy on a small-scale tire noise dataset and controlling the absolute error of the test tires within ±0.4 dB effectively. An accurate tire noise prediction model will provide a theoretical basis for tire design with low noise tires.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稚气满满完成签到 ,获得积分10
1秒前
周晴完成签到 ,获得积分10
2秒前
China发布了新的文献求助10
2秒前
kyt完成签到 ,获得积分10
2秒前
MADKAI发布了新的文献求助20
3秒前
hnn发布了新的文献求助10
3秒前
3秒前
oasissmz完成签到,获得积分10
4秒前
jiaojaioo完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
消风散几两重完成签到,获得积分10
5秒前
丘比特应助通~采纳,获得10
5秒前
隐形曼青应助千里采纳,获得10
6秒前
小可发布了新的文献求助10
6秒前
婷123完成签到 ,获得积分10
6秒前
sooya完成签到,获得积分20
6秒前
大个应助俏皮元珊采纳,获得10
6秒前
7秒前
snowdrift发布了新的文献求助10
7秒前
爆米花应助尊敬的钥匙采纳,获得10
7秒前
China完成签到,获得积分10
7秒前
Ll发布了新的文献求助10
7秒前
8秒前
李小胖完成签到,获得积分10
8秒前
刘鹏宇发布了新的文献求助10
9秒前
9秒前
9秒前
SXM发布了新的文献求助10
10秒前
duan完成签到,获得积分20
10秒前
MrCoolWu完成签到,获得积分10
10秒前
星辰大海应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
11秒前
Leif应助科研通管家采纳,获得20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740