Tire noise prediction based on transfer learning and multi-modal fusion

情态动词 噪音(视频) 融合 计算机科学 人工智能 声学 材料科学 物理 语言学 哲学 图像(数学) 高分子化学
作者
Chen Liang,Mingrui Hao,Ya‐Ching Shen,H. H. Li,Junwei Fan
标识
DOI:10.1177/09544070241232606
摘要

Vehicle traffic noise has become an important factor in urban noise pollution. With the increase in the number of new-energy vehicles, the current situation of tire/road noise as one of the main noise sources of automobiles is becoming increasingly prominent. Tire noise prediction is the basis for optimizing the design of low-noise tires, providing a reference basis for tire design with low-noise performance. This paper used deep learning methods to predict the noise performance of TBR radial tires. We obtained descriptive statistical features of tire structure and tread pattern images as input to the model, and used measured tire/road noise as output, then we constructed a multi-modal tire noise dataset. Comparing the prediction performance of three pre-trained transfer models such as Resnet18, VGG16, and Inception V3 on the tire pattern images, the Resnet18 had the best prediction effect. Resnet18 was selected as a feature extractor to extract image features, which fuse with the tire structural features at the feature level. The experiment constructed the TLMF-TRNP model to predict tire noise. The experimental results of the TLMF-TRNP model indicated that RMSE, MAE, and R 2 were 0.1337, 0.0948, and 0.9864 respectively, achieving ideal prediction accuracy on a small-scale tire noise dataset and controlling the absolute error of the test tires within ±0.4 dB effectively. An accurate tire noise prediction model will provide a theoretical basis for tire design with low noise tires.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助蛋蛋1采纳,获得10
1秒前
小荷完成签到,获得积分10
2秒前
烟花应助zzazz采纳,获得10
3秒前
Richard发布了新的文献求助10
3秒前
小蘑菇应助w_采纳,获得10
4秒前
科研通AI6应助fgfghijn采纳,获得10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
天鹅有罪完成签到 ,获得积分10
7秒前
8秒前
8秒前
在水一方应助ali采纳,获得10
8秒前
9秒前
9秒前
123发布了新的文献求助10
10秒前
本然完成签到,获得积分10
10秒前
xx完成签到,获得积分20
11秒前
HUYAOWEI发布了新的文献求助10
12秒前
再无春秋关注了科研通微信公众号
12秒前
zzz发布了新的文献求助20
12秒前
会放电的皮卡丘完成签到,获得积分10
12秒前
九月发布了新的文献求助10
13秒前
科研通AI2S应助化石吟采纳,获得10
13秒前
w_发布了新的文献求助10
13秒前
香蕉觅云应助Richard采纳,获得10
13秒前
xxfsx应助lawang采纳,获得10
13秒前
蛋蛋1发布了新的文献求助10
14秒前
HK关注了科研通微信公众号
14秒前
14秒前
方也日月完成签到,获得积分10
15秒前
16秒前
核桃应助105400155采纳,获得10
17秒前
kd发布了新的文献求助10
17秒前
在水一方应助我想进步采纳,获得10
18秒前
Ting完成签到,获得积分10
18秒前
18秒前
Emma完成签到 ,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507307
求助须知:如何正确求助?哪些是违规求助? 4602823
关于积分的说明 14482781
捐赠科研通 4536717
什么是DOI,文献DOI怎么找? 2486354
邀请新用户注册赠送积分活动 1468923
关于科研通互助平台的介绍 1441342