重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Tire noise prediction based on transfer learning and multi-modal fusion

情态动词 噪音(视频) 融合 计算机科学 人工智能 声学 材料科学 物理 语言学 哲学 图像(数学) 高分子化学
作者
Chen Liang,Mingrui Hao,Ya‐Ching Shen,H. H. Li,Junwei Fan
标识
DOI:10.1177/09544070241232606
摘要

Vehicle traffic noise has become an important factor in urban noise pollution. With the increase in the number of new-energy vehicles, the current situation of tire/road noise as one of the main noise sources of automobiles is becoming increasingly prominent. Tire noise prediction is the basis for optimizing the design of low-noise tires, providing a reference basis for tire design with low-noise performance. This paper used deep learning methods to predict the noise performance of TBR radial tires. We obtained descriptive statistical features of tire structure and tread pattern images as input to the model, and used measured tire/road noise as output, then we constructed a multi-modal tire noise dataset. Comparing the prediction performance of three pre-trained transfer models such as Resnet18, VGG16, and Inception V3 on the tire pattern images, the Resnet18 had the best prediction effect. Resnet18 was selected as a feature extractor to extract image features, which fuse with the tire structural features at the feature level. The experiment constructed the TLMF-TRNP model to predict tire noise. The experimental results of the TLMF-TRNP model indicated that RMSE, MAE, and R 2 were 0.1337, 0.0948, and 0.9864 respectively, achieving ideal prediction accuracy on a small-scale tire noise dataset and controlling the absolute error of the test tires within ±0.4 dB effectively. An accurate tire noise prediction model will provide a theoretical basis for tire design with low noise tires.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niexiaoxiao完成签到,获得积分10
刚刚
bpl完成签到,获得积分10
刚刚
fveie发布了新的文献求助10
1秒前
美丽的枫完成签到,获得积分10
1秒前
虾米完成签到,获得积分10
1秒前
1秒前
Owen应助羊咩咩采纳,获得10
2秒前
2秒前
Owen应助dtcao采纳,获得10
2秒前
ryy发布了新的文献求助10
2秒前
贤惠的芫发布了新的文献求助10
2秒前
wqs66616发布了新的文献求助10
2秒前
3秒前
Miracle发布了新的文献求助10
3秒前
3秒前
胖达发布了新的文献求助10
4秒前
5秒前
美丽的枫发布了新的文献求助10
5秒前
彩虹大侠完成签到,获得积分10
5秒前
眼睛大天晴完成签到,获得积分10
5秒前
一路向北完成签到,获得积分10
5秒前
6秒前
Ava应助风清扬采纳,获得10
6秒前
so发布了新的文献求助10
7秒前
英俊的铭应助小鱼鱼采纳,获得10
7秒前
搜集达人应助yuanyeyy采纳,获得10
7秒前
lznb完成签到 ,获得积分10
7秒前
8秒前
8秒前
瘦瘦牛排发布了新的文献求助10
9秒前
9秒前
传奇3应助壮观的可以采纳,获得20
9秒前
oyfg完成签到,获得积分20
10秒前
tuanzi完成签到,获得积分10
10秒前
田様应助fveie采纳,获得10
10秒前
研友_VZG7GZ应助胖达采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
KK完成签到,获得积分10
11秒前
bkagyin应助灵巧的念文采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465885
求助须知:如何正确求助?哪些是违规求助? 4570113
关于积分的说明 14322653
捐赠科研通 4496569
什么是DOI,文献DOI怎么找? 2463432
邀请新用户注册赠送积分活动 1452314
关于科研通互助平台的介绍 1427516