Tire noise prediction based on transfer learning and multi-modal fusion

情态动词 噪音(视频) 融合 计算机科学 人工智能 声学 材料科学 物理 语言学 哲学 图像(数学) 高分子化学
作者
Chen Liang,Mingrui Hao,Ya‐Ching Shen,H. H. Li,Junwei Fan
标识
DOI:10.1177/09544070241232606
摘要

Vehicle traffic noise has become an important factor in urban noise pollution. With the increase in the number of new-energy vehicles, the current situation of tire/road noise as one of the main noise sources of automobiles is becoming increasingly prominent. Tire noise prediction is the basis for optimizing the design of low-noise tires, providing a reference basis for tire design with low-noise performance. This paper used deep learning methods to predict the noise performance of TBR radial tires. We obtained descriptive statistical features of tire structure and tread pattern images as input to the model, and used measured tire/road noise as output, then we constructed a multi-modal tire noise dataset. Comparing the prediction performance of three pre-trained transfer models such as Resnet18, VGG16, and Inception V3 on the tire pattern images, the Resnet18 had the best prediction effect. Resnet18 was selected as a feature extractor to extract image features, which fuse with the tire structural features at the feature level. The experiment constructed the TLMF-TRNP model to predict tire noise. The experimental results of the TLMF-TRNP model indicated that RMSE, MAE, and R 2 were 0.1337, 0.0948, and 0.9864 respectively, achieving ideal prediction accuracy on a small-scale tire noise dataset and controlling the absolute error of the test tires within ±0.4 dB effectively. An accurate tire noise prediction model will provide a theoretical basis for tire design with low noise tires.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yugy完成签到,获得积分10
1秒前
Zoe完成签到,获得积分10
1秒前
孤独的猎手完成签到,获得积分10
1秒前
小呆完成签到 ,获得积分10
1秒前
zonker完成签到,获得积分10
1秒前
水沐菁华完成签到,获得积分10
1秒前
1秒前
wxh完成签到 ,获得积分10
2秒前
科目三应助林洛沁采纳,获得10
3秒前
3秒前
细胞不凋王女士完成签到,获得积分10
3秒前
zc完成签到,获得积分10
3秒前
多看文献发布了新的文献求助10
3秒前
言希完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
852应助Loeop采纳,获得10
4秒前
H哈完成签到,获得积分10
4秒前
PaoPao完成签到,获得积分10
4秒前
ceeray23发布了新的文献求助30
5秒前
ll完成签到,获得积分10
5秒前
科研通AI2S应助chenqinqin采纳,获得10
6秒前
王栋完成签到,获得积分20
6秒前
蒙蒙细雨完成签到,获得积分10
7秒前
shijiaoshou完成签到,获得积分10
7秒前
无极微光应助tjnusq采纳,获得20
7秒前
彭于晏应助施梦得采纳,获得10
8秒前
9秒前
栗松琛发布了新的文献求助10
9秒前
zc发布了新的文献求助10
10秒前
小陈发布了新的文献求助10
10秒前
LONG完成签到 ,获得积分10
10秒前
小劲劲发布了新的文献求助10
10秒前
ahua完成签到 ,获得积分10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
沁晨完成签到,获得积分10
12秒前
JIA完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977