Tire noise prediction based on transfer learning and multi-modal fusion

情态动词 噪音(视频) 融合 计算机科学 人工智能 声学 材料科学 物理 语言学 哲学 图像(数学) 高分子化学
作者
Chen Liang,Mingrui Hao,Ya‐Ching Shen,H. H. Li,Junwei Fan
标识
DOI:10.1177/09544070241232606
摘要

Vehicle traffic noise has become an important factor in urban noise pollution. With the increase in the number of new-energy vehicles, the current situation of tire/road noise as one of the main noise sources of automobiles is becoming increasingly prominent. Tire noise prediction is the basis for optimizing the design of low-noise tires, providing a reference basis for tire design with low-noise performance. This paper used deep learning methods to predict the noise performance of TBR radial tires. We obtained descriptive statistical features of tire structure and tread pattern images as input to the model, and used measured tire/road noise as output, then we constructed a multi-modal tire noise dataset. Comparing the prediction performance of three pre-trained transfer models such as Resnet18, VGG16, and Inception V3 on the tire pattern images, the Resnet18 had the best prediction effect. Resnet18 was selected as a feature extractor to extract image features, which fuse with the tire structural features at the feature level. The experiment constructed the TLMF-TRNP model to predict tire noise. The experimental results of the TLMF-TRNP model indicated that RMSE, MAE, and R 2 were 0.1337, 0.0948, and 0.9864 respectively, achieving ideal prediction accuracy on a small-scale tire noise dataset and controlling the absolute error of the test tires within ±0.4 dB effectively. An accurate tire noise prediction model will provide a theoretical basis for tire design with low noise tires.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
battle完成签到 ,获得积分10
刚刚
L111发布了新的文献求助10
刚刚
dtcao发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
yyj完成签到,获得积分10
4秒前
4秒前
max发布了新的文献求助10
4秒前
5秒前
砂糖完成签到,获得积分20
5秒前
斯文败类应助HCT采纳,获得10
5秒前
志小天发布了新的文献求助10
5秒前
5秒前
充电宝应助Utopia采纳,获得30
5秒前
Lucas应助黄油小花饼干采纳,获得30
6秒前
leslie发布了新的文献求助10
7秒前
Sun_Y完成签到,获得积分10
7秒前
NexusExplorer应助辛勤的映波采纳,获得10
7秒前
7秒前
BowieHuang应助LEEGAN采纳,获得10
7秒前
Lucas应助LEEGAN采纳,获得10
7秒前
砂糖发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
乖不如野发布了新的文献求助10
9秒前
伶俐碧萱完成签到 ,获得积分10
10秒前
青木瓜子完成签到 ,获得积分20
10秒前
10秒前
tree发布了新的文献求助10
11秒前
jiebai发布了新的文献求助10
11秒前
11秒前
hqy完成签到,获得积分10
11秒前
cocopan发布了新的文献求助10
12秒前
blenda发布了新的文献求助20
13秒前
万物可爱完成签到 ,获得积分10
14秒前
爆米花应助LHW采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809