Correcting Optical Aberration via Depth-Aware Point Spread Functions

计算机科学 人工智能 图像复原 计算机视觉 色差 点扩散函数 卷积(计算机科学) 镜头(地质) 特征(语言学) 自适应光学 图像(数学) 图像处理 光学 人工神经网络 色阶 物理 语言学 哲学
作者
Jun Luo,Yunfeng Nie,Wenqi Ren,Xiaochun Cao,Ming–Hsuan Yang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (8): 5541-5555 被引量:2
标识
DOI:10.1109/tpami.2024.3370794
摘要

Optical aberration is a ubiquitous degeneration in realistic lens-based imaging systems. Optical aberrations are caused by the differences in the optical path length when light travels through different regions of the camera lens with different incident angles. The blur and chromatic aberrations manifest significant discrepancies when the optical system changes. This work designs a transferable and effective image simulation system of simple lenses via multi-wavelength, depth-aware, spatially-variant four-dimensional point spread functions (4D-PSFs) estimation by changing a small amount of lens-dependent parameters. The image simulation system can alleviate the overhead of dataset collecting and exploiting the principle of computational imaging for effective optical aberration correction. With the guidance of domain knowledge about the image formation model provided by the 4D-PSFs, we establish a multi-scale optical aberration correction network for degraded image reconstruction, which consists of a scene depth estimation branch and an image restoration branch. Specifically, we propose to predict adaptive filters with the depth-aware PSFs and carry out dynamic convolutions, which facilitate the model's generalization in various scenes. We also employ convolution and self-attention mechanisms for global and local feature extraction and realize a spatially-variant restoration. The multi-scale feature extraction complements the features across different scales and provides fine details and contextual features. Extensive experiments demonstrate that our proposed algorithm performs favorably against state-of-the-art restoration methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏戎儿完成签到,获得积分10
刚刚
赵雪发布了新的文献求助10
1秒前
1秒前
开放迎天完成签到 ,获得积分10
2秒前
2秒前
沐1217完成签到,获得积分10
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
兜兜应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
卡卡应助科研通管家采纳,获得30
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
跳跳糖应助科研通管家采纳,获得20
4秒前
居居应助科研通管家采纳,获得10
5秒前
5秒前
hmx发布了新的文献求助10
5秒前
5秒前
7秒前
LZY发布了新的文献求助10
9秒前
9秒前
Hello应助积极书双采纳,获得10
9秒前
龘龘完成签到,获得积分10
10秒前
Cc发布了新的文献求助10
10秒前
想吃芝士荔枝烤鱼完成签到,获得积分10
10秒前
hmx完成签到,获得积分10
10秒前
田様应助lunar采纳,获得10
10秒前
小蘑菇应助大橙子采纳,获得10
10秒前
华仔应助Yy采纳,获得10
11秒前
12秒前
合适面包发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160242
求助须知:如何正确求助?哪些是违规求助? 2811282
关于积分的说明 7891712
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315472
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038