光电探测器
钙钛矿(结构)
光电子学
材料科学
暗电流
量子效率
化学
结晶学
作者
Jie Yang,Chen Li,Xiaoyan Wei,Yexiong Huang,Daofu Wu,Jun’an Lai,Mingyu Pi,Lin‐Bao Luo,Xiaosheng Tang
摘要
For next-generation Internet-of-Everything applications, such as artificial neural-network image sensors, artificial retina, visible light communication, flexible devices, and so on, the photodetectors with excellent properties are urgently demanded. In recent years, two-dimensional (2D) material-based photodetectors have been developed and certified for remarkable performances. Nonetheless, it cannot meet the need of wide linear dynamic range, ultralow dark current, and large on/off ratio, which are critical factors for commercial applications. Recently, quasi-2D Ruddlesden–Popper (RP) perovskites are explored and developed as well-known photovoltaic and optoelectronic materials. Herein, an excellent photodetector based on quasi-2D RP layered perovskite PEA2FA2Pb3Br10 film was fabricated. The photodetector displays an ultralow dark current of 4.08 × 10−11 A, high specific detectivity of 1.69 × 1010 Jones, high on/off ratio of 7.33 × 103, and fast rise/fall times of 32/38 ms, attributed to its multiple quantum wells in PEA2FA2Pb3Br10. Therefore, the photodetectors based on quasi-2D RP perovskite PEA2FA2Pb3Br10 have immense potentials in the field of optoelectronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI