Electrolytic Capacitor Surface Defect Detection Based on Deep Convolution Neural Network

卷积(计算机科学) 计算机科学 人工神经网络 人工智能 卷积神经网络 材料科学 模式识别(心理学)
作者
Haijian Wang,Mo Han,Shun Lu,Xuemei Zhao
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:36 (2): 101935-101935
标识
DOI:10.1016/j.jksuci.2024.101935
摘要

The existing methods for detecting surface defects in electrolytic capacitors are typically based on conventional machine vision, with limited feature extraction capabilities, poor versatility, slow detection speed, and the inability to achieve accurate and real-time defect detection. In this study, a real-time object detection algorithm based on an improved single shot multibox detector (SSD) is proposed to achieve omnidirectional surface defect detection of electrolytic capacitors. First, an electrolytic capacitor surface image acquisition device was established to capture omnidirectional surface images of the capacitors, and an electrolytic capacitor surface defect dataset was created. Next, the visual geometry group (VGG)-16 network structure was replaced with the MobileNetv2 network structure, effectively reducing the model’s parameter count and improving inference speed. Moreover, the Multibox Loss function was replaced with the Focal Loss function to increase the model’s attention to difficult-to-classify samples and improve model accuracy. Additionally, a transfer learning network model was designed to apply the model to electrolytic capacitors of different colors using small sample learning. Finally, the performance of the improved network model was tested on a dataset of electrolytic capacitor surface defects. The experimental results demonstrate that the parameters quantity of improved model is 3.50M, the mAP value reaches 92.67%, which is improved by 2.54%, and the Macro-F1 value reaches 92.15%, which is 11.32% higher than that before improvement. Thus, the proposed improved SSD model provides a theoretical basis and technical prerequisites for automated and intelligent surface defect detection in electrolytic capacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
54小甜完成签到,获得积分10
1秒前
Ava应助油糕饵块采纳,获得10
1秒前
1秒前
无花果应助fanfan采纳,获得10
2秒前
冰糖葫卢发布了新的文献求助10
2秒前
2秒前
3秒前
SYLH应助物理幽灵采纳,获得10
4秒前
5秒前
望道完成签到,获得积分10
6秒前
如风发布了新的文献求助10
6秒前
ZhijunXiang发布了新的文献求助10
8秒前
liourg完成签到 ,获得积分10
8秒前
微笑的桐完成签到 ,获得积分10
9秒前
9秒前
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
10秒前
酷炫翠桃应助科研通管家采纳,获得20
10秒前
酷波er应助科研通管家采纳,获得30
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
睿诺应助科研通管家采纳,获得10
11秒前
ED应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得30
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
王灿灿完成签到,获得积分10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
Dr_Zhang发布了新的文献求助10
11秒前
酷炫翠桃应助科研通管家采纳,获得20
11秒前
11秒前
11秒前
冰糖葫卢完成签到,获得积分10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420