Electrolytic Capacitor Surface Defect Detection Based on Deep Convolution Neural Network

卷积(计算机科学) 计算机科学 人工神经网络 人工智能 卷积神经网络 材料科学 模式识别(心理学)
作者
Haijian Wang,Mo Han,Shun Lu,Xuemei Zhao
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:36 (2): 101935-101935
标识
DOI:10.1016/j.jksuci.2024.101935
摘要

The existing methods for detecting surface defects in electrolytic capacitors are typically based on conventional machine vision, with limited feature extraction capabilities, poor versatility, slow detection speed, and the inability to achieve accurate and real-time defect detection. In this study, a real-time object detection algorithm based on an improved single shot multibox detector (SSD) is proposed to achieve omnidirectional surface defect detection of electrolytic capacitors. First, an electrolytic capacitor surface image acquisition device was established to capture omnidirectional surface images of the capacitors, and an electrolytic capacitor surface defect dataset was created. Next, the visual geometry group (VGG)-16 network structure was replaced with the MobileNetv2 network structure, effectively reducing the model’s parameter count and improving inference speed. Moreover, the Multibox Loss function was replaced with the Focal Loss function to increase the model’s attention to difficult-to-classify samples and improve model accuracy. Additionally, a transfer learning network model was designed to apply the model to electrolytic capacitors of different colors using small sample learning. Finally, the performance of the improved network model was tested on a dataset of electrolytic capacitor surface defects. The experimental results demonstrate that the parameters quantity of improved model is 3.50M, the mAP value reaches 92.67%, which is improved by 2.54%, and the Macro-F1 value reaches 92.15%, which is 11.32% higher than that before improvement. Thus, the proposed improved SSD model provides a theoretical basis and technical prerequisites for automated and intelligent surface defect detection in electrolytic capacitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滟滟完成签到,获得积分10
1秒前
cyx完成签到,获得积分10
1秒前
甜甜圈完成签到,获得积分10
2秒前
圆王发布了新的文献求助10
2秒前
2秒前
3秒前
小黑发布了新的文献求助100
3秒前
冷傲茹妖发布了新的文献求助10
3秒前
3秒前
4秒前
cyx发布了新的文献求助10
4秒前
5秒前
文艺的从筠完成签到 ,获得积分10
5秒前
情怀应助PSCs采纳,获得10
6秒前
科研小S应助123采纳,获得10
6秒前
意难平发布了新的文献求助10
6秒前
7秒前
英姑应助酷酷的傲白采纳,获得10
8秒前
8秒前
风筝完成签到,获得积分10
8秒前
JamesPei应助感动的绝音采纳,获得10
9秒前
9秒前
10秒前
YLL完成签到,获得积分10
10秒前
liwei发布了新的文献求助10
10秒前
落寞的小蚂蚁完成签到,获得积分10
10秒前
楠枫应助降临采纳,获得10
11秒前
11秒前
完美世界应助qhrjsxx采纳,获得10
12秒前
wanci应助DDDD采纳,获得10
12秒前
13秒前
14秒前
眼睛大的忆曼完成签到,获得积分10
14秒前
蓝天发布了新的文献求助10
14秒前
今后应助文献进入大脑采纳,获得10
14秒前
15秒前
不抽香烟发布了新的文献求助10
15秒前
扯淡发布了新的文献求助10
15秒前
sxw完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601299
求助须知:如何正确求助?哪些是违规求助? 4686815
关于积分的说明 14846229
捐赠科研通 4680459
什么是DOI,文献DOI怎么找? 2539291
邀请新用户注册赠送积分活动 1506167
关于科研通互助平台的介绍 1471283