Electrolytic Capacitor Surface Defect Detection Based on Deep Convolution Neural Network

卷积(计算机科学) 计算机科学 人工神经网络 人工智能 卷积神经网络 材料科学 模式识别(心理学)
作者
Haijian Wang,Mo Han,Shun Lu,Xuemei Zhao
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:36 (2): 101935-101935
标识
DOI:10.1016/j.jksuci.2024.101935
摘要

The existing methods for detecting surface defects in electrolytic capacitors are typically based on conventional machine vision, with limited feature extraction capabilities, poor versatility, slow detection speed, and the inability to achieve accurate and real-time defect detection. In this study, a real-time object detection algorithm based on an improved single shot multibox detector (SSD) is proposed to achieve omnidirectional surface defect detection of electrolytic capacitors. First, an electrolytic capacitor surface image acquisition device was established to capture omnidirectional surface images of the capacitors, and an electrolytic capacitor surface defect dataset was created. Next, the visual geometry group (VGG)-16 network structure was replaced with the MobileNetv2 network structure, effectively reducing the model’s parameter count and improving inference speed. Moreover, the Multibox Loss function was replaced with the Focal Loss function to increase the model’s attention to difficult-to-classify samples and improve model accuracy. Additionally, a transfer learning network model was designed to apply the model to electrolytic capacitors of different colors using small sample learning. Finally, the performance of the improved network model was tested on a dataset of electrolytic capacitor surface defects. The experimental results demonstrate that the parameters quantity of improved model is 3.50M, the mAP value reaches 92.67%, which is improved by 2.54%, and the Macro-F1 value reaches 92.15%, which is 11.32% higher than that before improvement. Thus, the proposed improved SSD model provides a theoretical basis and technical prerequisites for automated and intelligent surface defect detection in electrolytic capacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
puke完成签到,获得积分20
4秒前
大胆洋葱发布了新的文献求助10
5秒前
5秒前
lanvinnn阿银完成签到,获得积分10
8秒前
lfl发布了新的文献求助10
8秒前
共享精神应助LiLi采纳,获得10
8秒前
zhw发布了新的文献求助30
10秒前
雨诺完成签到,获得积分10
11秒前
勤恳书包完成签到,获得积分10
11秒前
11秒前
调皮秋完成签到,获得积分20
11秒前
脑洞疼应助山居剑意采纳,获得10
12秒前
lfl完成签到,获得积分10
14秒前
mei发布了新的文献求助30
14秒前
li发布了新的文献求助10
15秒前
桐桐应助霸气小蘑菇采纳,获得30
16秒前
16秒前
17秒前
yi完成签到,获得积分10
18秒前
赘婿应助泉水叮咚采纳,获得20
20秒前
啤酒白菜完成签到,获得积分10
23秒前
23秒前
充电宝应助妩媚的尔阳采纳,获得10
26秒前
29秒前
ha完成签到 ,获得积分10
30秒前
超级的绿凝完成签到 ,获得积分10
31秒前
星辰大海应助ww采纳,获得10
32秒前
季生完成签到,获得积分10
32秒前
1257应助城南徐师傅采纳,获得10
33秒前
Obliviate完成签到,获得积分10
33秒前
桐桐应助妮妮采纳,获得10
33秒前
35秒前
36秒前
高兴的半仙完成签到,获得积分10
36秒前
37秒前
山居剑意发布了新的文献求助10
39秒前
39秒前
40秒前
魈maker完成签到,获得积分10
41秒前
ww发布了新的文献求助10
43秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151919
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852576
捐赠科研通 2460608
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629070
版权声明 601760