Electrolytic Capacitor Surface Defect Detection Based on Deep Convolution Neural Network

卷积(计算机科学) 计算机科学 人工神经网络 人工智能 卷积神经网络 材料科学 模式识别(心理学)
作者
Haijian Wang,Mo Han,Shun Lu,Xuemei Zhao
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:36 (2): 101935-101935
标识
DOI:10.1016/j.jksuci.2024.101935
摘要

The existing methods for detecting surface defects in electrolytic capacitors are typically based on conventional machine vision, with limited feature extraction capabilities, poor versatility, slow detection speed, and the inability to achieve accurate and real-time defect detection. In this study, a real-time object detection algorithm based on an improved single shot multibox detector (SSD) is proposed to achieve omnidirectional surface defect detection of electrolytic capacitors. First, an electrolytic capacitor surface image acquisition device was established to capture omnidirectional surface images of the capacitors, and an electrolytic capacitor surface defect dataset was created. Next, the visual geometry group (VGG)-16 network structure was replaced with the MobileNetv2 network structure, effectively reducing the model’s parameter count and improving inference speed. Moreover, the Multibox Loss function was replaced with the Focal Loss function to increase the model’s attention to difficult-to-classify samples and improve model accuracy. Additionally, a transfer learning network model was designed to apply the model to electrolytic capacitors of different colors using small sample learning. Finally, the performance of the improved network model was tested on a dataset of electrolytic capacitor surface defects. The experimental results demonstrate that the parameters quantity of improved model is 3.50M, the mAP value reaches 92.67%, which is improved by 2.54%, and the Macro-F1 value reaches 92.15%, which is 11.32% higher than that before improvement. Thus, the proposed improved SSD model provides a theoretical basis and technical prerequisites for automated and intelligent surface defect detection in electrolytic capacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123发布了新的文献求助10
2秒前
大意的星星完成签到,获得积分10
5秒前
愉快的孤容完成签到,获得积分10
7秒前
7秒前
阳佟水蓉完成签到,获得积分10
7秒前
充电宝应助123采纳,获得10
9秒前
杨迪完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助20
10秒前
10秒前
wp发布了新的文献求助10
10秒前
14秒前
hyhyhyhy发布了新的文献求助10
14秒前
LL完成签到,获得积分10
18秒前
JamesPei应助hyhyhyhy采纳,获得10
19秒前
19秒前
tang完成签到,获得积分10
20秒前
20秒前
如意厉完成签到,获得积分10
21秒前
1029zx完成签到,获得积分10
22秒前
xiaoming777完成签到,获得积分10
22秒前
Leo完成签到 ,获得积分10
24秒前
snai1发布了新的文献求助10
24秒前
慕青应助碧蓝的幻悲采纳,获得30
27秒前
HgPP完成签到 ,获得积分10
28秒前
Ankher完成签到,获得积分10
28秒前
田様应助猪头采纳,获得10
30秒前
董H完成签到,获得积分10
30秒前
wp完成签到,获得积分10
30秒前
31秒前
潇洒的灵萱完成签到,获得积分10
31秒前
SciGPT应助清酒采纳,获得10
32秒前
Manzia完成签到,获得积分10
32秒前
33秒前
听风轻语完成签到,获得积分10
34秒前
小刘发布了新的文献求助10
35秒前
CipherSage应助乌拉挂机采纳,获得10
36秒前
36秒前
李敏之发布了新的文献求助10
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011650
求助须知:如何正确求助?哪些是违规求助? 4253023
关于积分的说明 13252960
捐赠科研通 4055663
什么是DOI,文献DOI怎么找? 2218299
邀请新用户注册赠送积分活动 1227935
关于科研通互助平台的介绍 1150088