Correlative Scan Matching Position Estimation Method by Fusing Visual and Radar Line Features

人工智能 计算机视觉 计算机科学 视觉里程计 雷达 雷达成像 同时定位和映射 移动机器人 机器人 电信
作者
Yang Li,Xiaoyang Cui,Yanping Wang,Jinping Sun
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (1): 114-114
标识
DOI:10.3390/rs16010114
摘要

Millimeter-wave radar and optical cameras are one of the primary sensing combinations for autonomous platforms such as self-driving vehicles and disaster monitoring robots. The millimeter-wave radar odometry can perform self-pose estimation and environmental mapping. However, cumulative errors can arise during extended measurement periods. In particular scenes where loop closure conditions are absent and visual geometric features are discontinuous, existing loop detection methods based on back-end optimization face challenges. To address this issue, this study introduces a correlative scan matching (CSM) pose estimation method that integrates visual and radar line features (VRL-SLAM). By making use of the pose output and the occupied grid map generated by the front end of the millimeter-wave radar’s simultaneous localization and mapping (SLAM), it compensates for accumulated errors by matching discontinuous visual line features and radar line features. Firstly, a pose estimation framework that integrates visual and radar line features was proposed to reduce the accumulated errors generated by the odometer. Secondly, an adaptive Hough transform line detection method (A-Hough) based on the projection of the prior radar grid map was introduced, eliminating interference from non-matching lines, enhancing the accuracy of line feature matching, and establishing a collection of visual line features. Furthermore, a Gaussian mixture model clustering method based on radar cross-section (RCS) was proposed, reducing the impact of radar clutter points online feature matching. Lastly, actual data from two scenes were collected to compare the algorithm proposed in this study with the CSM algorithm and RI-SLAM.. The results demonstrated a reduction in long-term accumulated errors, verifying the effectiveness of the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
drtianyunhong完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
领导范儿应助good慧采纳,获得10
3秒前
yiriaoxianyu发布了新的文献求助10
3秒前
deletelzr完成签到,获得积分10
3秒前
xsk861777发布了新的文献求助10
4秒前
4秒前
时尚的雁易完成签到,获得积分10
4秒前
NexusExplorer应助lll采纳,获得10
5秒前
CodeCraft应助郭郭郭采纳,获得10
6秒前
ZHANG发布了新的文献求助30
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
chemj关注了科研通微信公众号
8秒前
Orange应助xsk861777采纳,获得10
8秒前
Plusonezzz完成签到,获得积分20
8秒前
田様应助YOUNG-M采纳,获得10
9秒前
zhangguo发布了新的文献求助10
10秒前
苹果千筹完成签到,获得积分10
10秒前
蛋筒发布了新的文献求助10
12秒前
浮游应助Plusonezzz采纳,获得10
13秒前
orixero应助薏_采纳,获得10
13秒前
14秒前
14秒前
wanci应助pan采纳,获得10
14秒前
斯文败类应助耍酷的雅阳采纳,获得20
14秒前
科研通AI2S应助Sara采纳,获得10
15秒前
15秒前
16秒前
杨杨杨发布了新的文献求助10
18秒前
lll发布了新的文献求助10
19秒前
MJJJ完成签到,获得积分10
19秒前
nana发布了新的文献求助10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617