Correlative Scan Matching Position Estimation Method by Fusing Visual and Radar Line Features

人工智能 计算机视觉 计算机科学 视觉里程计 雷达 雷达成像 同时定位和映射 移动机器人 机器人 电信
作者
Yang Li,Xiaoyang Cui,Yanping Wang,Jinping Sun
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (1): 114-114
标识
DOI:10.3390/rs16010114
摘要

Millimeter-wave radar and optical cameras are one of the primary sensing combinations for autonomous platforms such as self-driving vehicles and disaster monitoring robots. The millimeter-wave radar odometry can perform self-pose estimation and environmental mapping. However, cumulative errors can arise during extended measurement periods. In particular scenes where loop closure conditions are absent and visual geometric features are discontinuous, existing loop detection methods based on back-end optimization face challenges. To address this issue, this study introduces a correlative scan matching (CSM) pose estimation method that integrates visual and radar line features (VRL-SLAM). By making use of the pose output and the occupied grid map generated by the front end of the millimeter-wave radar’s simultaneous localization and mapping (SLAM), it compensates for accumulated errors by matching discontinuous visual line features and radar line features. Firstly, a pose estimation framework that integrates visual and radar line features was proposed to reduce the accumulated errors generated by the odometer. Secondly, an adaptive Hough transform line detection method (A-Hough) based on the projection of the prior radar grid map was introduced, eliminating interference from non-matching lines, enhancing the accuracy of line feature matching, and establishing a collection of visual line features. Furthermore, a Gaussian mixture model clustering method based on radar cross-section (RCS) was proposed, reducing the impact of radar clutter points online feature matching. Lastly, actual data from two scenes were collected to compare the algorithm proposed in this study with the CSM algorithm and RI-SLAM.. The results demonstrated a reduction in long-term accumulated errors, verifying the effectiveness of the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啥呀啥呀完成签到,获得积分10
刚刚
1秒前
2秒前
希望天下0贩的0应助柍踏采纳,获得10
2秒前
爆米花应助安年采纳,获得10
2秒前
bkagyin应助jiafang采纳,获得10
3秒前
刘胖胖发布了新的文献求助10
3秒前
啥呀啥呀发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
A水暖五金批发张哥完成签到,获得积分10
5秒前
李明发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
鳗鱼尔安完成签到,获得积分10
6秒前
发嗲的发布了新的文献求助10
7秒前
7秒前
萤火虫完成签到,获得积分10
8秒前
黑魔仙发布了新的文献求助10
8秒前
tina完成签到 ,获得积分10
8秒前
Jasper应助Akoasm采纳,获得10
9秒前
郎泽昆完成签到,获得积分10
11秒前
WZ完成签到 ,获得积分10
12秒前
丘比特应助小囡同学采纳,获得10
13秒前
自由的晓夏完成签到,获得积分10
13秒前
思源应助lan采纳,获得10
13秒前
14秒前
cloud完成签到,获得积分10
15秒前
高高的天亦完成签到 ,获得积分10
16秒前
17秒前
18秒前
阳光的玉米完成签到,获得积分10
19秒前
19秒前
柍踏发布了新的文献求助10
20秒前
聪明蜻蜓完成签到,获得积分20
20秒前
20秒前
20秒前
东方完成签到 ,获得积分10
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787048
求助须知:如何正确求助?哪些是违规求助? 5697004
关于积分的说明 15471171
捐赠科研通 4915690
什么是DOI,文献DOI怎么找? 2645870
邀请新用户注册赠送积分活动 1593553
关于科研通互助平台的介绍 1547896