亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of next-generation reference interval models to establish reference intervals based on medical data: current status, algorithms and future consideration

计算机科学 置信区间 区间(图论) 算法 医学诊断 统计 机器学习 数据挖掘 数学 医学 病理 组合数学
作者
Chaochao Ma,Yu Zheng,Ling Qiu
出处
期刊:Critical Reviews in Clinical Laboratory Sciences [Informa]
卷期号:61 (4): 298-316 被引量:4
标识
DOI:10.1080/10408363.2023.2291379
摘要

Evidence derived from laboratory medicine plays a pivotal role in the diagnosis, treatment monitoring, and prognosis of various diseases. Reference intervals (RIs) are indispensable tools for assessing test results. The accuracy of clinical decision-making relies directly on the appropriateness of RIs. With the increase in real-world studies and advances in computational power, there has been increased interest in establishing RIs using big data. This approach has demonstrated cost-effectiveness and applicability across diverse scenarios, thereby enhancing the overall suitability of the RI to a certain extent. However, challenges persist when tests results are influenced by age and sex. Reliance on a single RI or a grouping of RIs based on age and sex can lead to erroneous interpretation of results with significant implications for clinical decision-making. To address this issue, the development of next generation of reference interval models has arisen at an historic moment. Such models establish a curve relationship to derive continuously changing reference intervals for test results across different age and sex categories. By automatically selecting appropriate RIs based on the age and sex of patients during result interpretation, this approach facilitates clinical decision-making and enhances disease diagnosis/treatment as well as health management practices. Development of next-generation reference interval models use direct or indirect sampling techniques to select reference individuals and then employed curve fitting methods such as splines, polynomial regression and others to establish continuous models. In light of these studies, several observations can be made: Firstly, to date, limited interest has been shown in developing next-generation reference interval models, with only a few models currently available. Secondly, there are a wide range of methods and algorithms for constructing such models, and their diversity may lead to confusion. Thirdly, the process of constructing next-generation reference interval models can be complex, particularly when employing indirect sampling techniques. At present, normative documents pertaining to the development of next-generation reference interval models are lacking. In summary, this review aims to provide an overview of the current state of development of next-generation reference interval models by defining them, highlighting inherent advantages, and addressing existing challenges. It also describes the process, advanced algorithms for model building, the tools required and the diagnosis and validation of models. Additionally, a discussion on the prospects of utilizing big data for developing next-generation reference interval models is presented. The ultimate objective is to equip clinical laboratories with the theoretical framework and practical tools necessary for developing and optimizing next-generation reference interval models to establish next-generation reference intervals while enhancing the use of medical data resources to facilitate precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助tangyuan采纳,获得10
57秒前
57秒前
1分钟前
tangyuan发布了新的文献求助10
1分钟前
kokocrl完成签到,获得积分10
1分钟前
棉花糖猫弦完成签到 ,获得积分0
1分钟前
科研通AI2S应助tangyuan采纳,获得30
2分钟前
2分钟前
2分钟前
大个应助十三采纳,获得10
3分钟前
3分钟前
nevillmissy完成签到 ,获得积分20
3分钟前
3分钟前
4分钟前
4分钟前
十三发布了新的文献求助10
4分钟前
4分钟前
十三完成签到,获得积分10
4分钟前
微笑的傲易完成签到,获得积分10
4分钟前
爱静静完成签到,获得积分0
5分钟前
lqmentu完成签到,获得积分10
5分钟前
英姑应助JUST采纳,获得10
5分钟前
6分钟前
JUST发布了新的文献求助10
6分钟前
NexusExplorer应助Joker采纳,获得10
6分钟前
CodeCraft应助陈媛采纳,获得10
6分钟前
7分钟前
Joker发布了新的文献求助10
7分钟前
8分钟前
8分钟前
8分钟前
8分钟前
LouieHuang发布了新的文献求助10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
LouieHuang发布了新的文献求助10
8分钟前
LouieHuang发布了新的文献求助10
8分钟前
LouieHuang发布了新的文献求助10
8分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846029
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757