Machine Learning–Based Clinical Prediction Models for Acute Ischemic Stroke Based on Serum Xanthine Oxidase Levels

医学 冲程(发动机) 缺血性中风 黄嘌呤氧化酶 内科学 脑缺血 心脏病学 缺血 生物化学 机械工程 工程类 化学
作者
Xin Chen,Qingping Zeng,Luhang Tao,Jing Yuan,Jing Hang,Guangyu Lu,Jun Shao,Yuping Li,Hailong Yu
出处
期刊:World Neurosurgery [Elsevier]
卷期号:184: e695-e707 被引量:1
标识
DOI:10.1016/j.wneu.2024.02.014
摘要

Early prediction of the onset, progression and prognosis of acute ischemic stroke (AIS) is helpful for treatment decision-making and proactive management. Although several biomarkers have been found to predict the progression and prognosis of AIS, these biomarkers have not been widely used in routine clinical practice. Xanthine oxidase (XO) is a form of xanthine oxidoreductase (XOR), which is widespread in various organs of the human body and plays an important role in redox reactions and ischemia‒reperfusion injury. Our previous studies have shown that serum XO levels on admission have certain clinical predictive value for AIS. The purpose of this study was to utilize serum XO levels and clinical data to establish machine learning models for predicting the onset, progression, and prognosis of AIS. We enrolled 328 consecutive patients with AIS and 107 healthy controls from October 2020 to September 2021. Serum XO levels and stroke-related clinical data were collected. We established 5 machine learning models—the logistic regression (LR), support vector machine (SVM), decision tree, random forest, and K-nearest neighbor (KNN) models—to predict the onset, progression, and prognosis of AIS. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, negative predictive value, and positive predictive value were used to evaluate the predictive performance of each model. Among the 5 machine learning models predicting AIS onset, the AUROC values of 4 prediction models were over 0.7, while that of the KNN model was lower (AUROC = 0.6708, 95% CI 0.576–0.765). The LR model showed the best AUROC value (AUROC = 0.9586, 95% CI 0.927–0.991). Although the 5 machine learning models showed relatively poor predictive value for the progression of AIS (all AUROCs <0.7), the LR model still showed the highest AUROC value (AUROC = 0.6543, 95% CI 0.453–0.856). We compared the value of 5 machine learning models in predicting the prognosis of AIS, and the LR model showed the best predictive value (AUROC = 0.8124, 95% CI 0.715–0.910). The tested machine learning models based on serum levels of XO could predict the onset and prognosis of AIS. Among the 5 machine learning models, we found that the LR model showed the best predictive performance. Machine learning algorithms improve accuracy in the early diagnosis of AIS and can be used to make treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助典雅的俊驰采纳,获得10
刚刚
liu完成签到,获得积分10
刚刚
。。。完成签到,获得积分10
刚刚
刚刚
天马行空完成签到,获得积分10
刚刚
1秒前
channy完成签到,获得积分10
1秒前
科研通AI6应助芝士奶盖采纳,获得10
1秒前
cc完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
端庄荔枝发布了新的文献求助10
4秒前
4秒前
陈惠卿88完成签到,获得积分10
4秒前
4秒前
5秒前
忧郁道之发布了新的文献求助10
5秒前
冀1完成签到,获得积分10
5秒前
5秒前
6秒前
zxc发布了新的文献求助10
6秒前
6秒前
Deb发布了新的文献求助10
6秒前
方法法国衣服头发完成签到,获得积分10
7秒前
7秒前
学习中的呜哩哇啦完成签到,获得积分10
7秒前
7秒前
1234发布了新的文献求助10
7秒前
8秒前
8秒前
F冯发布了新的文献求助10
9秒前
KeYang发布了新的文献求助10
9秒前
WenTang发布了新的文献求助10
9秒前
我不李姐发布了新的文献求助30
9秒前
科目三应助HH采纳,获得10
9秒前
聪慧丹寒发布了新的文献求助10
9秒前
gaochanglu发布了新的文献求助10
10秒前
EpQAQ完成签到,获得积分10
10秒前
淡淡的方盒完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271