Machine Learning–Based Clinical Prediction Models for Acute Ischemic Stroke Based on Serum Xanthine Oxidase Levels

医学 逻辑回归 接收机工作特性 随机森林 机器学习 内科学 人工智能 预测值 决策树 计算机科学
作者
Xin Chen,Qingping Zeng,Luhang Tao,Jing Yuan,Jing Hang,Guangyu Lu,Jun Shao,Yuping Li,Hailong Yu
出处
期刊:World Neurosurgery [Elsevier]
卷期号:184: e695-e707
标识
DOI:10.1016/j.wneu.2024.02.014
摘要

Early prediction of the onset, progression and prognosis of acute ischemic stroke (AIS) is helpful for treatment decision-making and proactive management. Although several biomarkers have been found to predict the progression and prognosis of AIS, these biomarkers have not been widely used in routine clinical practice. Xanthine oxidase (XO) is a form of xanthine oxidoreductase (XOR), which is widespread in various organs of the human body and plays an important role in redox reactions and ischemia‒reperfusion injury. Our previous studies have shown that serum XO levels on admission have certain clinical predictive value for AIS. The purpose of this study was to utilize serum XO levels and clinical data to establish machine learning models for predicting the onset, progression, and prognosis of AIS. We enrolled 328 consecutive patients with AIS and 107 healthy controls from October 2020 to September 2021. Serum XO levels and stroke-related clinical data were collected. We established 5 machine learning models—the logistic regression (LR), support vector machine (SVM), decision tree, random forest, and K-nearest neighbor (KNN) models—to predict the onset, progression, and prognosis of AIS. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, negative predictive value, and positive predictive value were used to evaluate the predictive performance of each model. Among the 5 machine learning models predicting AIS onset, the AUROC values of 4 prediction models were over 0.7, while that of the KNN model was lower (AUROC = 0.6708, 95% CI 0.576–0.765). The LR model showed the best AUROC value (AUROC = 0.9586, 95% CI 0.927–0.991). Although the 5 machine learning models showed relatively poor predictive value for the progression of AIS (all AUROCs <0.7), the LR model still showed the highest AUROC value (AUROC = 0.6543, 95% CI 0.453–0.856). We compared the value of 5 machine learning models in predicting the prognosis of AIS, and the LR model showed the best predictive value (AUROC = 0.8124, 95% CI 0.715–0.910). The tested machine learning models based on serum levels of XO could predict the onset and prognosis of AIS. Among the 5 machine learning models, we found that the LR model showed the best predictive performance. Machine learning algorithms improve accuracy in the early diagnosis of AIS and can be used to make treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美满的乐瑶完成签到 ,获得积分10
1秒前
搜集达人应助大方雅柏采纳,获得10
2秒前
阿啵呲嘚呃of咯完成签到 ,获得积分10
5秒前
misstwo发布了新的文献求助10
10秒前
TheaGao完成签到 ,获得积分10
15秒前
贤惠的紫菜完成签到 ,获得积分10
17秒前
陆千万完成签到,获得积分10
17秒前
19秒前
你是我的小月亮完成签到 ,获得积分10
19秒前
千俞完成签到 ,获得积分10
20秒前
哈哈完成签到 ,获得积分10
25秒前
一勺四季完成签到 ,获得积分10
25秒前
酷波er应助科研通管家采纳,获得30
27秒前
27秒前
Loooong应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
一直成长完成签到,获得积分10
27秒前
畅快城完成签到 ,获得积分10
29秒前
suxin发布了新的文献求助10
31秒前
蛋妮完成签到 ,获得积分10
32秒前
知世郎完成签到 ,获得积分10
37秒前
是我呀小夏完成签到 ,获得积分10
39秒前
minuxSCI完成签到,获得积分10
40秒前
桂花酒酿完成签到,获得积分10
41秒前
彪壮的青雪完成签到 ,获得积分10
42秒前
43秒前
47秒前
ntxiaohu完成签到,获得积分10
47秒前
suxin发布了新的文献求助10
48秒前
犹豫勇完成签到,获得积分10
51秒前
犹豫的凡白完成签到 ,获得积分10
51秒前
L_x完成签到 ,获得积分10
54秒前
大方雅柏发布了新的文献求助10
54秒前
Kishi应助felix采纳,获得50
54秒前
KrisTina完成签到 ,获得积分10
54秒前
纸猫完成签到 ,获得积分10
58秒前
Jenny完成签到 ,获得积分10
59秒前
柚C美式完成签到 ,获得积分10
1分钟前
CO2完成签到,获得积分10
1分钟前
moroa完成签到,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Wanddickenabhängiges Bruchzähigkeitsverhalten und Schädigungsentwicklung in einer Großgusskomponente aus EN-GJS-600-3 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341917
求助须知:如何正确求助?哪些是违规求助? 2969256
关于积分的说明 8638066
捐赠科研通 2648930
什么是DOI,文献DOI怎么找? 1450477
科研通“疑难数据库(出版商)”最低求助积分说明 671917
邀请新用户注册赠送积分活动 661011