Machine Learning–Based Clinical Prediction Models for Acute Ischemic Stroke Based on Serum Xanthine Oxidase Levels

医学 冲程(发动机) 缺血性中风 黄嘌呤氧化酶 内科学 脑缺血 心脏病学 缺血 机械工程 生物化学 化学 工程类
作者
Xin Chen,Qingping Zeng,Luhang Tao,Jing Yuan,Jing Hang,Guangyu Lu,Jun Shao,Yuping Li,Hailong Yu
出处
期刊:World Neurosurgery [Elsevier]
卷期号:184: e695-e707 被引量:1
标识
DOI:10.1016/j.wneu.2024.02.014
摘要

Early prediction of the onset, progression and prognosis of acute ischemic stroke (AIS) is helpful for treatment decision-making and proactive management. Although several biomarkers have been found to predict the progression and prognosis of AIS, these biomarkers have not been widely used in routine clinical practice. Xanthine oxidase (XO) is a form of xanthine oxidoreductase (XOR), which is widespread in various organs of the human body and plays an important role in redox reactions and ischemia‒reperfusion injury. Our previous studies have shown that serum XO levels on admission have certain clinical predictive value for AIS. The purpose of this study was to utilize serum XO levels and clinical data to establish machine learning models for predicting the onset, progression, and prognosis of AIS. We enrolled 328 consecutive patients with AIS and 107 healthy controls from October 2020 to September 2021. Serum XO levels and stroke-related clinical data were collected. We established 5 machine learning models—the logistic regression (LR), support vector machine (SVM), decision tree, random forest, and K-nearest neighbor (KNN) models—to predict the onset, progression, and prognosis of AIS. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, negative predictive value, and positive predictive value were used to evaluate the predictive performance of each model. Among the 5 machine learning models predicting AIS onset, the AUROC values of 4 prediction models were over 0.7, while that of the KNN model was lower (AUROC = 0.6708, 95% CI 0.576–0.765). The LR model showed the best AUROC value (AUROC = 0.9586, 95% CI 0.927–0.991). Although the 5 machine learning models showed relatively poor predictive value for the progression of AIS (all AUROCs <0.7), the LR model still showed the highest AUROC value (AUROC = 0.6543, 95% CI 0.453–0.856). We compared the value of 5 machine learning models in predicting the prognosis of AIS, and the LR model showed the best predictive value (AUROC = 0.8124, 95% CI 0.715–0.910). The tested machine learning models based on serum levels of XO could predict the onset and prognosis of AIS. Among the 5 machine learning models, we found that the LR model showed the best predictive performance. Machine learning algorithms improve accuracy in the early diagnosis of AIS and can be used to make treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失去记忆的金鱼完成签到,获得积分10
刚刚
寒冷念文发布了新的文献求助30
刚刚
1秒前
芋圆完成签到,获得积分10
2秒前
迷路大白发布了新的文献求助30
2秒前
lhy1150469792发布了新的文献求助30
2秒前
cc发布了新的文献求助10
2秒前
bo发布了新的文献求助30
2秒前
8R60d8应助故意的煎蛋采纳,获得10
2秒前
开心蛋挞发布了新的文献求助10
2秒前
3秒前
shea发布了新的文献求助10
3秒前
4秒前
seven发布了新的文献求助10
5秒前
Lucas应助芭乐采纳,获得10
5秒前
6秒前
科研通AI6应助QPYY采纳,获得10
6秒前
6秒前
雪白的小土豆完成签到,获得积分10
6秒前
keke发布了新的文献求助10
7秒前
neuroQi发布了新的文献求助10
7秒前
芋圆发布了新的文献求助10
7秒前
thm完成签到,获得积分10
9秒前
领导范儿应助开心蛋挞采纳,获得10
9秒前
英姑应助seven采纳,获得10
10秒前
10秒前
10秒前
无极微光应助SS是采纳,获得20
11秒前
华仔应助elisa828采纳,获得10
11秒前
12秒前
科研通AI6应助长情访梦采纳,获得10
12秒前
12秒前
14秒前
SY完成签到,获得积分10
14秒前
15秒前
shea完成签到,获得积分10
15秒前
mm发布了新的文献求助10
16秒前
小小的手心完成签到,获得积分10
16秒前
17秒前
joy发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521185
求助须知:如何正确求助?哪些是违规求助? 4612661
关于积分的说明 14534683
捐赠科研通 4550154
什么是DOI,文献DOI怎么找? 2493511
邀请新用户注册赠送积分活动 1474660
关于科研通互助平台的介绍 1446156