Machine Learning–Based Clinical Prediction Models for Acute Ischemic Stroke Based on Serum Xanthine Oxidase Levels

医学 冲程(发动机) 缺血性中风 黄嘌呤氧化酶 内科学 脑缺血 心脏病学 缺血 机械工程 生物化学 化学 工程类
作者
Xin Chen,Qingping Zeng,Luhang Tao,Jing Yuan,Jing Hang,Guangyu Lu,Jun Shao,Yuping Li,Hailong Yu
出处
期刊:World Neurosurgery [Elsevier BV]
卷期号:184: e695-e707 被引量:1
标识
DOI:10.1016/j.wneu.2024.02.014
摘要

Early prediction of the onset, progression and prognosis of acute ischemic stroke (AIS) is helpful for treatment decision-making and proactive management. Although several biomarkers have been found to predict the progression and prognosis of AIS, these biomarkers have not been widely used in routine clinical practice. Xanthine oxidase (XO) is a form of xanthine oxidoreductase (XOR), which is widespread in various organs of the human body and plays an important role in redox reactions and ischemia‒reperfusion injury. Our previous studies have shown that serum XO levels on admission have certain clinical predictive value for AIS. The purpose of this study was to utilize serum XO levels and clinical data to establish machine learning models for predicting the onset, progression, and prognosis of AIS. We enrolled 328 consecutive patients with AIS and 107 healthy controls from October 2020 to September 2021. Serum XO levels and stroke-related clinical data were collected. We established 5 machine learning models—the logistic regression (LR), support vector machine (SVM), decision tree, random forest, and K-nearest neighbor (KNN) models—to predict the onset, progression, and prognosis of AIS. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, negative predictive value, and positive predictive value were used to evaluate the predictive performance of each model. Among the 5 machine learning models predicting AIS onset, the AUROC values of 4 prediction models were over 0.7, while that of the KNN model was lower (AUROC = 0.6708, 95% CI 0.576–0.765). The LR model showed the best AUROC value (AUROC = 0.9586, 95% CI 0.927–0.991). Although the 5 machine learning models showed relatively poor predictive value for the progression of AIS (all AUROCs <0.7), the LR model still showed the highest AUROC value (AUROC = 0.6543, 95% CI 0.453–0.856). We compared the value of 5 machine learning models in predicting the prognosis of AIS, and the LR model showed the best predictive value (AUROC = 0.8124, 95% CI 0.715–0.910). The tested machine learning models based on serum levels of XO could predict the onset and prognosis of AIS. Among the 5 machine learning models, we found that the LR model showed the best predictive performance. Machine learning algorithms improve accuracy in the early diagnosis of AIS and can be used to make treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞银耳汤关注了科研通微信公众号
刚刚
1秒前
发嗲的雨筠完成签到,获得积分10
1秒前
小虎应助湛湛采纳,获得10
1秒前
nixx完成签到,获得积分20
1秒前
4秒前
5秒前
深情安青应助yshog采纳,获得10
7秒前
iperper发布了新的文献求助10
7秒前
国服第一YWF完成签到,获得积分10
7秒前
活泼的番茄完成签到,获得积分10
8秒前
9秒前
10秒前
符先生完成签到,获得积分10
11秒前
666应助lily采纳,获得10
11秒前
HJZ发布了新的文献求助20
12秒前
管靖易完成签到 ,获得积分10
13秒前
张张发布了新的文献求助10
13秒前
13秒前
iperper完成签到,获得积分10
13秒前
小树完成签到 ,获得积分10
14秒前
woollen2022完成签到,获得积分10
14秒前
14秒前
15秒前
SYLH应助Minions采纳,获得30
15秒前
某奈在看海完成签到,获得积分10
16秒前
张雷应助王鹏飞采纳,获得20
16秒前
16秒前
17秒前
17秒前
17秒前
zz完成签到 ,获得积分10
18秒前
19秒前
犹豫曲奇发布了新的文献求助10
19秒前
Milk发布了新的文献求助10
20秒前
凉白开完成签到,获得积分10
20秒前
yshog发布了新的文献求助10
21秒前
牛牛眉目发布了新的文献求助10
21秒前
22秒前
Fengkai_CHEN发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388