Integrated analysis of single-cell RNA-seq and chipset data unravels PANoptosis-related genes in sepsis

计算生物学 基因 败血症 生物 聚类分析 生物信息学 免疫学 遗传学 计算机科学 机器学习
作者
Wei Dai,Ping Zheng,Jian Wu,Siqi Chen,Mingtao Deng,Xiangqian Tong,Fen Liu,Xiuling Shang,Kejian Qian
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:14 被引量:4
标识
DOI:10.3389/fimmu.2023.1247131
摘要

Background The poor prognosis of sepsis warrants the investigation of biomarkers for predicting the outcome. Several studies have indicated that PANoptosis exerts a critical role in tumor initiation and development. Nevertheless, the role of PANoptosis in sepsis has not been fully elucidated. Methods We obtained Sepsis samples and scRNA-seq data from the GEO database. PANoptosis-related genes were subjected to consensus clustering and functional enrichment analysis, followed by identification of differentially expressed genes and calculation of the PANoptosis score. A PANoptosis-based prognostic model was developed. In vitro experiments were performed to verify distinct PANoptosis-related genes. An external scRNA-seq dataset was used to verify cellular localization. Results Unsupervised clustering analysis using 16 PANoptosis-related genes identified three subtypes of sepsis. Kaplan-Meier analysis showed significant differences in patient survival among the subtypes, with different immune infiltration levels. Differential analysis of the subtypes identified 48 DEGs. Boruta algorithm PCA analysis identified 16 DEGs as PANoptosis-related signature genes. We developed PANscore based on these signature genes, which can distinguish different PANoptosis and clinical characteristics and may serve as a potential biomarker. Single-cell sequencing analysis identified six cell types, with high PANscore clustering relatively in B cells, and low PANscore in CD16+ and CD14+ monocytes and Megakaryocyte progenitors. ZBP1, XAF1, IFI44L, SOCS1, and PARP14 were relatively higher in cells with high PANscore. Conclusion We developed a machine learning based Boruta algorithm for profiling PANoptosis related subgroups with in predicting survival and clinical features in the sepsis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
危机的芸完成签到 ,获得积分10
刚刚
橘子海发布了新的文献求助10
刚刚
1秒前
FashionBoy应助魔幻的访天采纳,获得10
1秒前
2秒前
wanci应助Hang采纳,获得10
2秒前
白华苍松发布了新的文献求助10
3秒前
谨慎冷松完成签到,获得积分20
3秒前
btuil发布了新的文献求助10
4秒前
Yuying完成签到,获得积分10
4秒前
三千弱水发布了新的文献求助10
6秒前
pluto应助JUNJIU采纳,获得10
6秒前
dyc0222应助JUNJIU采纳,获得10
6秒前
上官若男应助浩二采纳,获得10
6秒前
Amber完成签到,获得积分10
6秒前
hiling发布了新的文献求助30
6秒前
冷酷海露发布了新的文献求助10
7秒前
毛豆应助啵乐乐采纳,获得10
7秒前
无名老大应助啵乐乐采纳,获得30
7秒前
研究啥应助啵乐乐采纳,获得10
7秒前
南宫清涟应助啵乐乐采纳,获得10
7秒前
壮观问寒应助啵乐乐采纳,获得10
7秒前
7秒前
bkagyin应助啵乐乐采纳,获得10
7秒前
丘比特应助橘子海采纳,获得10
7秒前
脑洞疼应助积极孤菱采纳,获得10
7秒前
9秒前
大个应助Yuying采纳,获得10
9秒前
哈哈完成签到,获得积分10
9秒前
10秒前
zzyyzz完成签到,获得积分10
10秒前
WWW应助归海诗珊采纳,获得10
10秒前
彭于晏应助aaa采纳,获得10
12秒前
111KFC发布了新的文献求助10
12秒前
ssc完成签到,获得积分10
12秒前
12秒前
13秒前
Akim应助FLM采纳,获得10
13秒前
Derik发布了新的文献求助10
13秒前
13秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3415343
求助须知:如何正确求助?哪些是违规求助? 3017186
关于积分的说明 8880041
捐赠科研通 2704787
什么是DOI,文献DOI怎么找? 1483057
科研通“疑难数据库(出版商)”最低求助积分说明 685639
邀请新用户注册赠送积分活动 680604