Ultra-short-term wind farm cluster power prediction based on FC-GCN and trend-aware switching mechanism

邻接矩阵 邻接表 风力发电 计算机科学 风速 图形 期限(时间) 算法 气象学 工程类 地理 理论计算机科学 物理 量子力学 电气工程
作者
Mao Yang,Y. Huang,Yunfeng Guo,Wei Zhang,Bo Wang
出处
期刊:Energy [Elsevier]
卷期号:290: 130238-130238 被引量:17
标识
DOI:10.1016/j.energy.2024.130238
摘要

Currently, wind power prediction has so many problems in the ultra-short-term time scale (0–4h), which is difficult to improve the deterministic prediction and probability prediction accuracy of the wind farm cluster because it can not fully explore the spatio-temporal correlation between the physical change process and the wind farm. In this paper, a method of ultra-short-term deterministic and probability prediction of wind farm cluster power based on Graph Convolutional Network (GCN) considering fluctuation correlation (FC) is proposed. Firstly, the adjacency matrix is constructed based on the power sequence fluctuation information of each wind farm, and the GCN is designed. Secondly, the spatio-temporal features of power and Numerical Weather Prediction (NWP) wind speed are extracted and fused based on the network model of dual-channel and dual-adjacency matrix. Thirdly, in order to effectively improve the prediction accuracy, a trend switching mechanism is designed based on the effective trend of NWP. When the fluctuation information of NWP is not accurate, the graph structure is constructed by the adjacency matrix based on geographical location to achieve effective prediction. Finally, the method proposed in this paper is applied to wind farm clusters in three provinces of China, compared with some commonly used methods, the average RMSE is reduced by 1.34 %, 1.62 %, 2.07 %, respectively, and the average CWC is reduced by 6.12 %, 4.49 %, 6.62 %, which verifies the effectiveness of this method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信玥完成签到,获得积分10
刚刚
Arain456完成签到 ,获得积分10
1秒前
自信玥发布了新的文献求助10
3秒前
3秒前
隐形曼青应助Dasph7采纳,获得10
3秒前
ding应助nonosense采纳,获得10
4秒前
Jasper应助gyh采纳,获得10
5秒前
1410发布了新的文献求助10
6秒前
龙归大海完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
赤川川川发布了新的文献求助10
9秒前
9秒前
9秒前
Behappy完成签到 ,获得积分10
10秒前
10秒前
小飞侠完成签到,获得积分10
10秒前
zbr发布了新的文献求助10
11秒前
龙归大海发布了新的文献求助10
12秒前
14秒前
14秒前
大气藏今发布了新的文献求助10
14秒前
colormeblue完成签到 ,获得积分10
15秒前
顾矜应助123采纳,获得10
15秒前
Dasph7发布了新的文献求助10
16秒前
哒哒完成签到,获得积分10
18秒前
nonosense发布了新的文献求助10
19秒前
认真的思枫完成签到,获得积分10
19秒前
hohokuz发布了新的文献求助10
19秒前
22秒前
handsome完成签到,获得积分10
22秒前
25秒前
不安的以山完成签到 ,获得积分10
25秒前
27秒前
27秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
南山幼儿园一把手完成签到 ,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711883
求助须知:如何正确求助?哪些是违规求助? 5206296
关于积分的说明 15265590
捐赠科研通 4864003
什么是DOI,文献DOI怎么找? 2611125
邀请新用户注册赠送积分活动 1561399
关于科研通互助平台的介绍 1518729