Noised Multi-layer Networks Clustering with Graph Denoising and Structure Learning

聚类分析 人工智能 计算机科学 图形 稳健性(进化) 功能(生物学) 人为噪声 图层(电子) 算法 机器学习 理论计算机科学 生物 化学 生物化学 基因 物理层 电信 进化生物学 无线 有机化学
作者
Wenming Wu,Wensheng Zhang,Maoguo Gong,Xiaoke Ma
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (10): 5294-5307
标识
DOI:10.1109/tkde.2023.3335223
摘要

Multi-layer networks treat various types of interactions at each level to model complex systems in nature and society, and clustering of them is of great significance for revealing mechanisms of systems. Vast majority of current algorithms focus on identifying the common communities in clear multi-layer networks, and few attempt has been devoted to the detection of layer-specific communities in noised ones. To address these issues, a joint learning algorithm with G raph D enoising and S tructure L earning (called GDSL ) for the detection of layer-specific communities in noised multi-layer networks is proposed, which simultaneously integrates graph denoising, structure learning, and module detection. To remove noise of networks, GDSL re-constructs affinity graphs for the original ones by preserving community structure. To enhance robustness and discriminative of features, GDSL explores the relations of features among various layers with the Hilbert-Schmidt Independence Criterion and structure learning. Finally, GDSL joins all these procedures with an objective function, and deduces optimization rules. The results show that GDSL not only significantly outperforms baselines but also enhances the robustness of the algorithm, providing an effective model for community detection in noised multi-layer networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心的怡发布了新的文献求助10
刚刚
deepseek完成签到,获得积分10
1秒前
2秒前
moxiaoxi6952完成签到,获得积分10
2秒前
研友_VZG7GZ应助哎咦随风起采纳,获得10
2秒前
2秒前
李健应助plain采纳,获得10
3秒前
香蕉觅云应助zs采纳,获得10
4秒前
天天快乐应助快乐保温杯采纳,获得10
4秒前
66发布了新的文献求助50
5秒前
英俊的铭应助常琳琳采纳,获得10
5秒前
刘晓伟完成签到,获得积分10
5秒前
无花果应助caibao采纳,获得10
5秒前
5秒前
得失心的诅咒完成签到 ,获得积分10
6秒前
BASS完成签到,获得积分10
6秒前
星辰大海应助诚心的傲芙采纳,获得10
6秒前
迟到虞姬发布了新的文献求助10
7秒前
riyamao发布了新的文献求助10
7秒前
QP34完成签到 ,获得积分10
8秒前
8秒前
小树完成签到,获得积分20
9秒前
10秒前
10秒前
shiyixiao完成签到,获得积分10
11秒前
兔子先生发布了新的文献求助10
11秒前
lejunia完成签到 ,获得积分10
11秒前
Betty发布了新的文献求助10
13秒前
duoduo发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
dsdsd发布了新的文献求助10
15秒前
yangminghan完成签到,获得积分10
17秒前
传奇3应助笑点低的丹烟采纳,获得10
17秒前
Owen应助请叫我过儿采纳,获得10
18秒前
完美世界应助dsdsd采纳,获得10
19秒前
plain发布了新的文献求助10
20秒前
tonghau895完成签到 ,获得积分10
20秒前
杳鸢应助WW采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281