Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance

计算机科学 半监督学习 机器学习 主动学习(机器学习) 人工智能 监督学习 可靠性(半导体) 数据驱动 暖通空调 标记数据 数据挖掘 工程类 人工神经网络 机械工程 空调 功率(物理) 物理 量子力学
作者
Cheng Fan,WU Qing,Yang Zhao,Like Mo
出处
期刊:Applied Energy [Elsevier]
卷期号:356: 122356-122356
标识
DOI:10.1016/j.apenergy.2023.122356
摘要

Data-driven methods have drawn increasing interests in HVAC fault diagnosis tasks due to their intrinsic advantages in making real-time automated decisions. To ensure the reliability of data-driven models, it is essential to prepare sufficient labeled data for predictive modeling. In practice, it can be very time-consuming and labor-intensive to determine the actual operating condition or label of each data sample (e.g., Normal or Faulty), making it highly challenging to develop robust data-driven solutions through conventional supervised learning methods. To tackle such challenges, this study proposes a data analytic framework to integrate active learning and semi-supervised learning to utilize massive unlabeled data for improved fault diagnosis performance. More specifically, five active learning methods have been tested to quantify their effectiveness in discovering valuable unlabeled data for expert labeling. Semi-supervised data-driven models have been developed to enable autonomous knowledge discovery from unlabeled building operational data through self-training protocols. Data experiments have been conducted to explore the separated and integrated values of active and semi-supervised learning. The results show that active learning can effectively identify valuable data samples for fault diagnosis and thereby, reducing approximately 50% labeling costs. Cost-effective combinatorial strategies have been derived to integrate active learning and semi-supervised learning for practical applications. The research outcomes are valuable for developing advanced data-driven solutions with substantial decreases in manual costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实蜜粉完成签到,获得积分10
刚刚
1秒前
舒服的灵安完成签到 ,获得积分10
1秒前
zhengyang发布了新的文献求助10
2秒前
圆圆完成签到,获得积分10
3秒前
wang完成签到,获得积分10
3秒前
LU完成签到 ,获得积分10
3秒前
3秒前
共享精神应助沉静的颦采纳,获得10
4秒前
生动驳发布了新的文献求助10
5秒前
5秒前
跳跃尔琴发布了新的文献求助10
6秒前
小柴完成签到,获得积分10
6秒前
zsy完成签到,获得积分20
6秒前
S77应助流浪的小猪采纳,获得10
6秒前
zzz发布了新的文献求助10
6秒前
7秒前
ww完成签到 ,获得积分10
7秒前
顺顺利利发布了新的文献求助10
8秒前
mooncake发布了新的文献求助30
9秒前
萧暖完成签到,获得积分10
9秒前
9秒前
快乐访旋完成签到 ,获得积分10
10秒前
木勿忘完成签到,获得积分10
10秒前
今后应助张馨采纳,获得10
10秒前
王小明发布了新的文献求助10
12秒前
hangfengzi完成签到,获得积分10
12秒前
zhang完成签到,获得积分10
12秒前
hubo完成签到,获得积分10
13秒前
13秒前
七龙珠完成签到,获得积分10
13秒前
13秒前
13秒前
Moody Qi发布了新的文献求助10
14秒前
打水不打饭完成签到 ,获得积分10
14秒前
15秒前
fengpu完成签到,获得积分10
15秒前
zzz完成签到 ,获得积分10
15秒前
16秒前
lai完成签到 ,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068783
求助须知:如何正确求助?哪些是违规求助? 2722661
关于积分的说明 7478779
捐赠科研通 2369693
什么是DOI,文献DOI怎么找? 1256604
科研通“疑难数据库(出版商)”最低求助积分说明 609614
版权声明 596839