Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance

计算机科学 半监督学习 机器学习 主动学习(机器学习) 人工智能 监督学习 可靠性(半导体) 数据驱动 暖通空调 标记数据 数据挖掘 工程类 人工神经网络 空调 物理 机械工程 量子力学 功率(物理)
作者
Cheng Fan,Qiuting Wu,Yang Zhao,Like Mo
出处
期刊:Applied Energy [Elsevier]
卷期号:356: 122356-122356 被引量:16
标识
DOI:10.1016/j.apenergy.2023.122356
摘要

Data-driven methods have drawn increasing interests in HVAC fault diagnosis tasks due to their intrinsic advantages in making real-time automated decisions. To ensure the reliability of data-driven models, it is essential to prepare sufficient labeled data for predictive modeling. In practice, it can be very time-consuming and labor-intensive to determine the actual operating condition or label of each data sample (e.g., Normal or Faulty), making it highly challenging to develop robust data-driven solutions through conventional supervised learning methods. To tackle such challenges, this study proposes a data analytic framework to integrate active learning and semi-supervised learning to utilize massive unlabeled data for improved fault diagnosis performance. More specifically, five active learning methods have been tested to quantify their effectiveness in discovering valuable unlabeled data for expert labeling. Semi-supervised data-driven models have been developed to enable autonomous knowledge discovery from unlabeled building operational data through self-training protocols. Data experiments have been conducted to explore the separated and integrated values of active and semi-supervised learning. The results show that active learning can effectively identify valuable data samples for fault diagnosis and thereby, reducing approximately 50% labeling costs. Cost-effective combinatorial strategies have been derived to integrate active learning and semi-supervised learning for practical applications. The research outcomes are valuable for developing advanced data-driven solutions with substantial decreases in manual costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级瑶瑶完成签到,获得积分10
2秒前
浮游应助有害学术辣鸡采纳,获得10
4秒前
Akim应助不安心情采纳,获得10
4秒前
6秒前
7秒前
1111完成签到,获得积分20
9秒前
10秒前
封印发布了新的文献求助10
10秒前
迅速的岩发布了新的文献求助10
11秒前
12秒前
12秒前
唐唐发布了新的文献求助10
13秒前
无花果应助HJ采纳,获得10
13秒前
14秒前
小马甲应助廖思巧采纳,获得10
14秒前
wei完成签到,获得积分10
18秒前
HJJHJH发布了新的文献求助10
18秒前
20秒前
LAN21完成签到,获得积分10
23秒前
23秒前
YY发布了新的文献求助10
27秒前
29秒前
英姑应助jal西木采纳,获得10
29秒前
平淡的小璇完成签到,获得积分20
30秒前
liang完成签到,获得积分20
33秒前
shxxy123完成签到 ,获得积分10
35秒前
末末发布了新的文献求助20
36秒前
搞怪人雄完成签到,获得积分10
36秒前
打打应助粥丫丫丫丫采纳,获得10
36秒前
41秒前
代传芬完成签到 ,获得积分20
41秒前
42秒前
haixin完成签到,获得积分10
43秒前
43秒前
寻道图强应助碧蓝新柔采纳,获得50
44秒前
廖思巧发布了新的文献求助10
45秒前
科研小白发布了新的文献求助10
46秒前
达雨应助yyanxuemin919采纳,获得10
47秒前
平常寄翠完成签到 ,获得积分10
48秒前
万千回忆发布了新的文献求助10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645296
关于积分的说明 14674744
捐赠科研通 4586398
什么是DOI,文献DOI怎么找? 2516422
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870