Improved SwinUnet-based image segmentation method for charcoal slag of flame retardant material

分割 计算机科学 人工智能 卷积神经网络 图像分割 特征提取 编码器 模式识别(心理学) 材料科学 计算机视觉 操作系统
作者
Bo Yu,Yang Lei,Xiaofang Zhao
标识
DOI:10.1109/iccasit58768.2023.10351676
摘要

The carbon residue formed from calcination of flame retardant materials is crucial to evaluate their performance and ensure quality control. The complex shape and texture variations of the charcoal dross make traditional segmentation methods difficult to perform accurately. We propose an enhanced SwinUNet method to achieve more precise segmentation of the charcoal residue region in flame retardant materials. Improvements involve adapting the original encoder to utilize a convolutional approach and adding a transformer to the skip connection for processing the feature map. Annotate images are fed into an encoder based on a convolutional neural network to extract features, which are then up-sampled in a Swin Transformer-based decoder and connected with shallow feature maps of different scales produced during the encoding phase. Finally, the improved SwinUNet method is compared to several classical image segmentation methods. The results demonstrate significant outperformance of the remaining methods with about a 2% improvement over SwinUnet on Dice. These findings offer an effective tool and guidance for evaluating the performance of flame retardant materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助feihu采纳,获得10
刚刚
1秒前
3秒前
善学以致用应助JUNJIU采纳,获得20
4秒前
6秒前
6秒前
6秒前
kirirto发布了新的文献求助10
7秒前
7秒前
开朗的寄灵完成签到,获得积分10
7秒前
登登完成签到,获得积分10
8秒前
8秒前
shinysparrow完成签到,获得积分0
9秒前
李达也发布了新的文献求助10
10秒前
asdf应助kakafan采纳,获得10
10秒前
yi完成签到,获得积分10
11秒前
feihu发布了新的文献求助10
11秒前
迷路筝发布了新的文献求助10
12秒前
酷酷的冰真应助character577采纳,获得30
12秒前
NexusExplorer应助王姗and帅白采纳,获得10
13秒前
17秒前
沉迷学习给沉迷学习的求助进行了留言
18秒前
18秒前
20秒前
DrD发布了新的文献求助10
23秒前
华仔应助迷路筝采纳,获得10
23秒前
666应助ljh采纳,获得10
24秒前
牛牛眉目发布了新的文献求助10
26秒前
26秒前
Ava应助关山月采纳,获得10
27秒前
一直发布了新的文献求助10
28秒前
登登发布了新的文献求助10
29秒前
29秒前
30秒前
30秒前
32秒前
爆米花应助华青ww采纳,获得10
32秒前
32秒前
33秒前
SKSK完成签到 ,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361