亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Single‐Atom Manganese‐Catalyzed Oxygen Evolution Drives the Electrochemical Oxidation of Silane to Silanol

硅醇 硅烷 催化作用 化学 电化学 氧气 Atom(片上系统) 氧原子 无机化学 有机化学 电极 物理化学 分子 嵌入式系统 计算机科学
作者
Haitao Tang,He‐Yang Zhou,Ying‐Ming Pan,Jialan Zhang,Fei‐Hu Cui,Wenhao Li,Dingsheng Wang
出处
期刊:Angewandte Chemie [Wiley]
卷期号:63 (3) 被引量:37
标识
DOI:10.1002/anie.202315032
摘要

The oxygen evolution reaction (OER), characterized by a four-electron transfer kinetic process, represents a significant bottleneck in improving the efficiency of hydrogen production from water electrolysis. Consequently, extensive research efforts have been directed towards identifying single-atom electrocatalysts with exceptional OER performance. Despite the comprehensive understanding of the OER mechanism, its application to other valuable synthetic reactions has been limited. Herein, we leverage the MOOH intermediate, a key species in the Mn-N-C single-atom catalyst (Mn-SA@NC), which can be cyclically delivered in the OER. We exploit this intermediate' s capability to facilitate electrophilic transfer with silane, enabling efficient silane oxidation under electrochemical conditions. The SAC electrocatalytic system exhibits remarkable performance with catalyst loadings as low as 600 ppm and an exceptional turnover number of 9132. Furthermore, the catalytic method demonstrates stability under a 10 mmol flow chemistry setup. By serving as an OER electrocatalyst, the Mn-SA@NC drives the entire reaction, establishing a practical Mn SAC-catalyzed organic electrosynthesis system. This synthesis approach not only presents a promising avenue for the utilization of electrocatalytic OER but also highlights the potential of SACs as an attractive platform for organic electrosynthesis investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kashing完成签到,获得积分10
3秒前
赘婿应助科研小白采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
VDC应助科研通管家采纳,获得30
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
30秒前
wanci应助烂漫的无剑采纳,获得10
30秒前
36秒前
xqq完成签到,获得积分10
38秒前
科研小白发布了新的文献求助10
42秒前
11111完成签到,获得积分10
43秒前
小刘在学习完成签到,获得积分20
44秒前
50秒前
54秒前
1分钟前
贝壳beck发布了新的文献求助10
1分钟前
烂漫的无剑完成签到,获得积分10
1分钟前
李健应助科研小白采纳,获得10
1分钟前
1分钟前
略略略完成签到,获得积分10
1分钟前
1分钟前
一木完成签到,获得积分10
1分钟前
略略略发布了新的文献求助10
1分钟前
11完成签到,获得积分20
1分钟前
李雨芯完成签到,获得积分10
1分钟前
大个应助李雨芯采纳,获得10
2分钟前
2分钟前
swwhite发布了新的文献求助10
2分钟前
科研小白发布了新的文献求助10
2分钟前
充电宝应助wucl1990采纳,获得10
2分钟前
2分钟前
wucl1990发布了新的文献求助10
2分钟前
DrSong完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
2分钟前
dahai发布了新的文献求助10
2分钟前
ding应助科研小白采纳,获得10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135509
关于积分的说明 9412416
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716865