Optimization of the drone-assisted pickup and delivery problem

无人机 卡车 皮卡 背景(考古学) 计算机科学 启发式 瓶颈 运筹学 最后一英里(运输) 模拟 工程类 汽车工程 人工智能 嵌入式系统 天文 英里 图像(数学) 古生物学 遗传学 物理 生物
作者
Timothy Mulumba,Ali Diabat
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:181: 103377-103377 被引量:52
标识
DOI:10.1016/j.tre.2023.103377
摘要

The proposition of utilizing unmanned aerial vehicles (UAVs), colloquially known as drones, for the purpose of delivery was ushered into the mainstream by Amazon in 2013. Since then, UAVs have quickly gained traction as a feasible option for last-mile operations in transport and logistics. In the context of this research, we construct a mathematical framework aiming to depict the collaborative interaction between trucks and drones in coordinating pickup and delivery tasks with the objective of minimizing operational costs. The drone-assisted pickup and delivery problem (DAPDP) is a variant of the problem in which a single truck departs a depot with parcels and a UAV on board. As the truck picks up packages and makes deliveries, the UAV can also be used to make deliveries to customers near the truck's position. As the unmanned aerial vehicle (UAV) embarks on its delivery task, the truck continues on its route, making further deliveries along the way and retrieving the UAV at another customer location different from the launch point. The model is presented as a mixed integer linear program (MILP), and a novel heuristic solution approach based on the classic Clarke–Wright savings heuristic is proposed. Our heuristic's efficacy is evaluated in comparison to a scenario involving only trucks, with a comprehensive series of numerical experiments conducted to underscore the advantages of incorporating UAVs into the pickup and delivery problem. Finally, we perform a comprehensive sensitivity analysis of key drone parameters in order to demonstrate their impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医者完成签到,获得积分10
2秒前
2秒前
西瓜刀发布了新的文献求助10
3秒前
3秒前
周轩发布了新的文献求助10
3秒前
Crane发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
6秒前
小马甲应助下次一定采纳,获得10
6秒前
小二郎应助jg采纳,获得10
7秒前
7秒前
10秒前
11秒前
11秒前
11秒前
茹茹发布了新的文献求助10
12秒前
一号位完成签到,获得积分20
12秒前
聆听发布了新的文献求助10
12秒前
12秒前
能干彤完成签到,获得积分10
13秒前
越旻发布了新的文献求助10
15秒前
下次一定发布了新的文献求助10
15秒前
16秒前
laifeihong发布了新的文献求助50
17秒前
Jessica完成签到,获得积分0
17秒前
量子星尘发布了新的文献求助10
17秒前
出其东门完成签到,获得积分10
17秒前
核动力驴应助霍元甲采纳,获得10
18秒前
上官若男应助霍元甲采纳,获得10
18秒前
Mida应助开花不铁树采纳,获得10
21秒前
打打应助chemlink采纳,获得10
24秒前
24秒前
鱻雩关注了科研通微信公众号
26秒前
细心的思远完成签到,获得积分20
27秒前
爆米花应助ap2010采纳,获得30
27秒前
29秒前
29秒前
李健的小迷弟应助isabellae采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690