Optimization of the drone-assisted pickup and delivery problem

无人机 卡车 皮卡 背景(考古学) 计算机科学 启发式 瓶颈 运筹学 最后一英里(运输) 模拟 工程类 汽车工程 人工智能 嵌入式系统 天文 英里 图像(数学) 古生物学 遗传学 物理 生物
作者
Timothy Mulumba,Ali Diabat
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:181: 103377-103377 被引量:52
标识
DOI:10.1016/j.tre.2023.103377
摘要

The proposition of utilizing unmanned aerial vehicles (UAVs), colloquially known as drones, for the purpose of delivery was ushered into the mainstream by Amazon in 2013. Since then, UAVs have quickly gained traction as a feasible option for last-mile operations in transport and logistics. In the context of this research, we construct a mathematical framework aiming to depict the collaborative interaction between trucks and drones in coordinating pickup and delivery tasks with the objective of minimizing operational costs. The drone-assisted pickup and delivery problem (DAPDP) is a variant of the problem in which a single truck departs a depot with parcels and a UAV on board. As the truck picks up packages and makes deliveries, the UAV can also be used to make deliveries to customers near the truck's position. As the unmanned aerial vehicle (UAV) embarks on its delivery task, the truck continues on its route, making further deliveries along the way and retrieving the UAV at another customer location different from the launch point. The model is presented as a mixed integer linear program (MILP), and a novel heuristic solution approach based on the classic Clarke–Wright savings heuristic is proposed. Our heuristic's efficacy is evaluated in comparison to a scenario involving only trucks, with a comprehensive series of numerical experiments conducted to underscore the advantages of incorporating UAVs into the pickup and delivery problem. Finally, we perform a comprehensive sensitivity analysis of key drone parameters in order to demonstrate their impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助饱满书琴采纳,获得30
刚刚
斯文败类应助超级小熊猫采纳,获得10
1秒前
1秒前
bkagyin应助Syx_rcees采纳,获得10
1秒前
迷路的开山完成签到,获得积分20
1秒前
nnn完成签到,获得积分20
2秒前
顾矜应助桃洛璟采纳,获得10
2秒前
Hello应助桃洛璟采纳,获得10
2秒前
斯文败类应助桃洛璟采纳,获得10
2秒前
思源应助桃洛璟采纳,获得10
2秒前
所所应助大气的发箍采纳,获得10
3秒前
兰天完成签到,获得积分10
3秒前
研友_LjDgxZ完成签到 ,获得积分10
3秒前
山大琦子发布了新的文献求助10
4秒前
诚心芷巧完成签到,获得积分10
5秒前
坦率灵槐应助沉默的行云采纳,获得10
5秒前
我是老大应助。.。采纳,获得10
6秒前
yaruyou发布了新的文献求助60
6秒前
小蘑菇应助迷人雪碧采纳,获得10
6秒前
7秒前
7秒前
狮山教授发布了新的文献求助30
8秒前
9秒前
wbgwudi发布了新的文献求助100
9秒前
霞霞子完成签到 ,获得积分10
9秒前
yuying完成签到 ,获得积分10
9秒前
荷珠发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
patience发布了新的文献求助10
11秒前
开心易槐完成签到,获得积分20
12秒前
科研通AI6应助niuniu采纳,获得30
12秒前
共享精神应助含羞草采纳,获得10
13秒前
受伤的中蓝关注了科研通微信公众号
13秒前
111发布了新的文献求助10
13秒前
13秒前
雪鹰发布了新的文献求助30
13秒前
领导范儿应助ivying0209采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798