概化理论
忠诚
计算机科学
编码器
任务(项目管理)
人工智能
代表(政治)
图像(数学)
转化(遗传学)
机器学习
计算机视觉
数学
电信
生物化学
统计
化学
管理
政治
政治学
法学
经济
基因
操作系统
作者
Yuang Ai,Huaibo Huang,Xiaoqiang Zhou,Li Wang,Ran He
出处
期刊:Cornell University - arXiv
日期:2023-01-01
被引量:2
标识
DOI:10.48550/arxiv.2312.02918
摘要
Despite substantial progress, all-in-one image restoration (IR) grapples with persistent challenges in handling intricate real-world degradations. This paper introduces MPerceiver: a novel multimodal prompt learning approach that harnesses Stable Diffusion (SD) priors to enhance adaptiveness, generalizability and fidelity for all-in-one image restoration. Specifically, we develop a dual-branch module to master two types of SD prompts: textual for holistic representation and visual for multiscale detail representation. Both prompts are dynamically adjusted by degradation predictions from the CLIP image encoder, enabling adaptive responses to diverse unknown degradations. Moreover, a plug-in detail refinement module improves restoration fidelity via direct encoder-to-decoder information transformation. To assess our method, MPerceiver is trained on 9 tasks for all-in-one IR and outperforms state-of-the-art task-specific methods across most tasks. Post multitask pre-training, MPerceiver attains a generalized representation in low-level vision, exhibiting remarkable zero-shot and few-shot capabilities in unseen tasks. Extensive experiments on 16 IR tasks underscore the superiority of MPerceiver in terms of adaptiveness, generalizability and fidelity.
科研通智能强力驱动
Strongly Powered by AbleSci AI