Machine‐learning model comprising five clinical indices and liver stiffness measurement can accurately identify MASLD‐related liver fibrosis

肝硬化 医学 内科学 胃肠病学 纤维化 逻辑回归 肝细胞癌 肝纤维化
作者
Rong Fan,Ning Yu,Guanlin Li,Tamoore Arshad,Wen‐Yue Liu,Grace Lai‐Hung Wong,Xieer Liang,Yongpeng Chen,Xiaozhi Jin,Howard H.W. Leung,Jinjun Chen,Xiaodong Wang,Terry Cheuk‐Fung Yip,Arun J. Sanyal,Jian Sun,Vincent Wai‐Sun Wong,Ming‐Hua Zheng,Jinlin Hou
出处
期刊:Liver International [Wiley]
卷期号:44 (3): 749-759 被引量:16
标识
DOI:10.1111/liv.15818
摘要

Abstract Background & Aims aMAP score, as a hepatocellular carcinoma risk score, is proven to be associated with the degree of chronic hepatitis B‐related liver fibrosis. We aimed to evaluate the ability of aMAP score for metabolic dysfunction‐associated steatotic liver disease (MASLD; formerly NAFLD)‐related fibrosis diagnosis and establish a machine‐learning (ML) model to improve the diagnostic performance. Methods A total of 946 biopsy‐proved MASLD patients from China and the United States were included in the analysis. The aMAP score, demographic/clinical indices and liver stiffness measurement (LSM) were included in seven ML algorithms to build fibrosis diagnostic models in the training set ( N = 703). The performance of ML models was evaluated in the external validation set ( N = 125). Results The AUROCs of aMAP versus fibrosis‐4 index (FIB‐4) and aspartate aminotransferase‐platelet ratio (APRI) in cirrhosis and advanced fibrosis were (0.850 vs. 0.857 [ P = 0.734], 0.735 [ P = 0.001]) and (0.759 vs. 0.795 [ P = 0.027], 0.709 [ P = 0.049]). When using dual cut‐off values, aMAP had a smaller uncertainty area and higher accuracy (26.9%, 86.6%) than FIB‐4 (37.3%, 85.0%) and APRI (59.0%, 77.3%) in cirrhosis diagnosis. The seven ML models performed satisfactorily in most cases. In the validation set, the ML model comprising LSM and 5 indices (including age, sex, platelets, albumin and total bilirubin used in aMAP calculator), built by logistic regression algorithm (called LSM‐plus model), exhibited excellent performance. In cirrhosis and advanced fibrosis detection, the LSM‐plus model had higher accuracy (96.8%, 91.2%) than LSM alone (86.4%, 67.2%) and Agile score (76.0%, 83.2%), respectively. Additionally, the LSM‐plus model also displayed high specificity (cirrhosis: 98.3%; advanced fibrosis: 92.6%) with satisfactory AUROC (0.932, 0.875, respectively) and sensitivity (88.9%, 82.4%, respectively). Conclusions The aMAP score is capable of diagnosing MASLD‐related fibrosis. The LSM‐plus model could accurately identify MASLD‐related cirrhosis and advanced fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kevinarnett完成签到,获得积分10
刚刚
刚刚
newman发布了新的文献求助10
刚刚
lwj完成签到,获得积分10
1秒前
Stone完成签到,获得积分10
1秒前
Dreamsli完成签到,获得积分10
2秒前
2秒前
雨果发布了新的文献求助30
2秒前
2秒前
又壮了完成签到 ,获得积分10
2秒前
烟花应助majf采纳,获得10
2秒前
激昂的幻梦完成签到,获得积分10
3秒前
fanpengzhen完成签到,获得积分10
3秒前
在水一方应助L3采纳,获得10
4秒前
852应助哈哈哈哈采纳,获得10
4秒前
SciGPT应助11采纳,获得10
4秒前
5秒前
Cynthia发布了新的文献求助10
5秒前
ffw1完成签到,获得积分10
6秒前
6秒前
研友_qZAe6Z完成签到,获得积分10
6秒前
7秒前
酷波er应助给钱谢谢采纳,获得10
7秒前
dingxiaoye发布了新的文献求助10
7秒前
HJJHJH发布了新的文献求助50
7秒前
7秒前
合适丹彤发布了新的文献求助10
7秒前
ctttt发布了新的文献求助10
7秒前
贰什柒完成签到,获得积分10
8秒前
8秒前
研友_LN3xyn完成签到,获得积分10
8秒前
newman完成签到,获得积分10
8秒前
123关闭了123文献求助
9秒前
核桃发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
三颗星南极三完成签到 ,获得积分10
9秒前
cynical发布了新的文献求助10
9秒前
苏休夫完成签到,获得积分10
9秒前
9秒前
小蘑菇应助xxx采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665057
求助须知:如何正确求助?哪些是违规求助? 4874914
关于积分的说明 15111693
捐赠科研通 4824234
什么是DOI,文献DOI怎么找? 2582679
邀请新用户注册赠送积分活动 1536639
关于科研通互助平台的介绍 1495242