Machine‐learning model comprising five clinical indices and liver stiffness measurement can accurately identify MASLD‐related liver fibrosis

肝硬化 医学 内科学 胃肠病学 纤维化 逻辑回归 肝细胞癌 肝纤维化
作者
Rong Fan,Ning Yu,Guanlin Li,Tamoore Arshad,Wen‐Yue Liu,Grace Lai‐Hung Wong,Xieer Liang,Yongpeng Chen,Xiaozhi Jin,Howard Ho‐Wai Leung,Jinjun Chen,Xiaodong Wang,Terry Cheuk‐Fung Yip,Arun J. Sanyal,Jian Sun,Vincent Wai–Sun Wong,Ming–Hua Zheng,Jinlin Hou
出处
期刊:Liver International [Wiley]
卷期号:44 (3): 749-759 被引量:11
标识
DOI:10.1111/liv.15818
摘要

Abstract Background & Aims aMAP score, as a hepatocellular carcinoma risk score, is proven to be associated with the degree of chronic hepatitis B‐related liver fibrosis. We aimed to evaluate the ability of aMAP score for metabolic dysfunction‐associated steatotic liver disease (MASLD; formerly NAFLD)‐related fibrosis diagnosis and establish a machine‐learning (ML) model to improve the diagnostic performance. Methods A total of 946 biopsy‐proved MASLD patients from China and the United States were included in the analysis. The aMAP score, demographic/clinical indices and liver stiffness measurement (LSM) were included in seven ML algorithms to build fibrosis diagnostic models in the training set ( N = 703). The performance of ML models was evaluated in the external validation set ( N = 125). Results The AUROCs of aMAP versus fibrosis‐4 index (FIB‐4) and aspartate aminotransferase‐platelet ratio (APRI) in cirrhosis and advanced fibrosis were (0.850 vs. 0.857 [ P = 0.734], 0.735 [ P = 0.001]) and (0.759 vs. 0.795 [ P = 0.027], 0.709 [ P = 0.049]). When using dual cut‐off values, aMAP had a smaller uncertainty area and higher accuracy (26.9%, 86.6%) than FIB‐4 (37.3%, 85.0%) and APRI (59.0%, 77.3%) in cirrhosis diagnosis. The seven ML models performed satisfactorily in most cases. In the validation set, the ML model comprising LSM and 5 indices (including age, sex, platelets, albumin and total bilirubin used in aMAP calculator), built by logistic regression algorithm (called LSM‐plus model), exhibited excellent performance. In cirrhosis and advanced fibrosis detection, the LSM‐plus model had higher accuracy (96.8%, 91.2%) than LSM alone (86.4%, 67.2%) and Agile score (76.0%, 83.2%), respectively. Additionally, the LSM‐plus model also displayed high specificity (cirrhosis: 98.3%; advanced fibrosis: 92.6%) with satisfactory AUROC (0.932, 0.875, respectively) and sensitivity (88.9%, 82.4%, respectively). Conclusions The aMAP score is capable of diagnosing MASLD‐related fibrosis. The LSM‐plus model could accurately identify MASLD‐related cirrhosis and advanced fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gengar发布了新的文献求助10
2秒前
落寞凌波发布了新的文献求助10
2秒前
2秒前
3秒前
鸣笛应助yuaasusanaann采纳,获得30
4秒前
4秒前
Lei发布了新的文献求助20
4秒前
4秒前
5秒前
6秒前
阿亮86完成签到,获得积分10
7秒前
wyx关闭了wyx文献求助
7秒前
卢昱丹发布了新的文献求助10
7秒前
8秒前
华仔应助chenng采纳,获得10
8秒前
9秒前
9秒前
充电宝应助停云濛濛采纳,获得10
9秒前
10秒前
11秒前
11秒前
章鑫发布了新的文献求助30
11秒前
12秒前
13秒前
13秒前
酷波er应助风趣的傲之采纳,获得10
14秒前
研友_VZG7GZ应助Gengar采纳,获得10
14秒前
AUK发布了新的文献求助10
15秒前
本恩宁完成签到 ,获得积分10
15秒前
ioio发布了新的文献求助10
15秒前
22发布了新的文献求助10
15秒前
16秒前
huazi发布了新的文献求助10
17秒前
17秒前
落寞凌波完成签到,获得积分20
17秒前
19秒前
缓慢尔槐完成签到,获得积分10
20秒前
20秒前
风清扬应助22采纳,获得10
20秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014