Machine‐learning model comprising five clinical indices and liver stiffness measurement can accurately identify MASLD‐related liver fibrosis

肝硬化 医学 内科学 胃肠病学 纤维化 逻辑回归 肝细胞癌 肝纤维化
作者
Rong Fan,Ning Yu,Guanlin Li,Tamoore Arshad,Wen‐Yue Liu,Grace Lai‐Hung Wong,Xieer Liang,Yongpeng Chen,Xiaozhi Jin,Howard Ho‐Wai Leung,Jinjun Chen,Xiaodong Wang,Terry Cheuk‐Fung Yip,Arun J. Sanyal,Jian Sun,Vincent Wai‐Sun Wong,Ming‐Hua Zheng,Jinlin Hou
出处
期刊:Liver International [Wiley]
卷期号:44 (3): 749-759 被引量:4
标识
DOI:10.1111/liv.15818
摘要

Abstract Background & Aims aMAP score, as a hepatocellular carcinoma risk score, is proven to be associated with the degree of chronic hepatitis B‐related liver fibrosis. We aimed to evaluate the ability of aMAP score for metabolic dysfunction‐associated steatotic liver disease (MASLD; formerly NAFLD)‐related fibrosis diagnosis and establish a machine‐learning (ML) model to improve the diagnostic performance. Methods A total of 946 biopsy‐proved MASLD patients from China and the United States were included in the analysis. The aMAP score, demographic/clinical indices and liver stiffness measurement (LSM) were included in seven ML algorithms to build fibrosis diagnostic models in the training set ( N = 703). The performance of ML models was evaluated in the external validation set ( N = 125). Results The AUROCs of aMAP versus fibrosis‐4 index (FIB‐4) and aspartate aminotransferase‐platelet ratio (APRI) in cirrhosis and advanced fibrosis were (0.850 vs. 0.857 [ P = 0.734], 0.735 [ P = 0.001]) and (0.759 vs. 0.795 [ P = 0.027], 0.709 [ P = 0.049]). When using dual cut‐off values, aMAP had a smaller uncertainty area and higher accuracy (26.9%, 86.6%) than FIB‐4 (37.3%, 85.0%) and APRI (59.0%, 77.3%) in cirrhosis diagnosis. The seven ML models performed satisfactorily in most cases. In the validation set, the ML model comprising LSM and 5 indices (including age, sex, platelets, albumin and total bilirubin used in aMAP calculator), built by logistic regression algorithm (called LSM‐plus model), exhibited excellent performance. In cirrhosis and advanced fibrosis detection, the LSM‐plus model had higher accuracy (96.8%, 91.2%) than LSM alone (86.4%, 67.2%) and Agile score (76.0%, 83.2%), respectively. Additionally, the LSM‐plus model also displayed high specificity (cirrhosis: 98.3%; advanced fibrosis: 92.6%) with satisfactory AUROC (0.932, 0.875, respectively) and sensitivity (88.9%, 82.4%, respectively). Conclusions The aMAP score is capable of diagnosing MASLD‐related fibrosis. The LSM‐plus model could accurately identify MASLD‐related cirrhosis and advanced fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助震动的平蝶采纳,获得10
1秒前
baby的跑男发布了新的文献求助10
3秒前
3秒前
4秒前
夕照古风发布了新的文献求助10
4秒前
pzhxsy完成签到,获得积分10
4秒前
若溪完成签到 ,获得积分10
5秒前
orange发布了新的文献求助10
5秒前
彩虹猫完成签到 ,获得积分10
7秒前
20230054完成签到 ,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
mfy发布了新的文献求助10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
9秒前
静芝关注了科研通微信公众号
9秒前
打打应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
ding应助知识味酸奶采纳,获得10
11秒前
12秒前
夕照古风完成签到,获得积分10
12秒前
勤奋怀蕊完成签到,获得积分20
14秒前
14秒前
mfy完成签到,获得积分10
15秒前
orange完成签到,获得积分20
15秒前
16秒前
17秒前
迅速煎蛋发布了新的文献求助10
17秒前
All完成签到,获得积分10
17秒前
18秒前
化工葫芦娃完成签到,获得积分10
19秒前
勤奋怀蕊发布了新的文献求助10
21秒前
细心怜寒发布了新的文献求助10
21秒前
kmkz发布了新的文献求助10
21秒前
22秒前
波粒海苔发布了新的文献求助10
23秒前
qiao完成签到 ,获得积分10
23秒前
23秒前
冷酷紫南完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135127
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775305
捐赠科研通 2441924
什么是DOI,文献DOI怎么找? 1298299
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600839