清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine‐learning model comprising five clinical indices and liver stiffness measurement can accurately identify MASLD‐related liver fibrosis

肝硬化 医学 内科学 胃肠病学 纤维化 逻辑回归 肝细胞癌 肝纤维化
作者
Rong Fan,Ning Yu,Guanlin Li,Tamoore Arshad,Wen‐Yue Liu,Grace Lai–Hung Wong,Xieer Liang,Yongpeng Chen,Xiaozhi Jin,Howard Ho‐Wai Leung,Jinjun Chen,Xiaodong Wang,Terry Cheuk‐Fung Yip,Arun J. Sanyal,Jian Sun,Vincent Wai–Sun Wong,Ming‐Hua Zheng,Jinlin Hou
出处
期刊:Liver International [Wiley]
卷期号:44 (3): 749-759 被引量:7
标识
DOI:10.1111/liv.15818
摘要

Abstract Background & Aims aMAP score, as a hepatocellular carcinoma risk score, is proven to be associated with the degree of chronic hepatitis B‐related liver fibrosis. We aimed to evaluate the ability of aMAP score for metabolic dysfunction‐associated steatotic liver disease (MASLD; formerly NAFLD)‐related fibrosis diagnosis and establish a machine‐learning (ML) model to improve the diagnostic performance. Methods A total of 946 biopsy‐proved MASLD patients from China and the United States were included in the analysis. The aMAP score, demographic/clinical indices and liver stiffness measurement (LSM) were included in seven ML algorithms to build fibrosis diagnostic models in the training set ( N = 703). The performance of ML models was evaluated in the external validation set ( N = 125). Results The AUROCs of aMAP versus fibrosis‐4 index (FIB‐4) and aspartate aminotransferase‐platelet ratio (APRI) in cirrhosis and advanced fibrosis were (0.850 vs. 0.857 [ P = 0.734], 0.735 [ P = 0.001]) and (0.759 vs. 0.795 [ P = 0.027], 0.709 [ P = 0.049]). When using dual cut‐off values, aMAP had a smaller uncertainty area and higher accuracy (26.9%, 86.6%) than FIB‐4 (37.3%, 85.0%) and APRI (59.0%, 77.3%) in cirrhosis diagnosis. The seven ML models performed satisfactorily in most cases. In the validation set, the ML model comprising LSM and 5 indices (including age, sex, platelets, albumin and total bilirubin used in aMAP calculator), built by logistic regression algorithm (called LSM‐plus model), exhibited excellent performance. In cirrhosis and advanced fibrosis detection, the LSM‐plus model had higher accuracy (96.8%, 91.2%) than LSM alone (86.4%, 67.2%) and Agile score (76.0%, 83.2%), respectively. Additionally, the LSM‐plus model also displayed high specificity (cirrhosis: 98.3%; advanced fibrosis: 92.6%) with satisfactory AUROC (0.932, 0.875, respectively) and sensitivity (88.9%, 82.4%, respectively). Conclusions The aMAP score is capable of diagnosing MASLD‐related fibrosis. The LSM‐plus model could accurately identify MASLD‐related cirrhosis and advanced fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
27秒前
Apocalypse_zjz完成签到,获得积分10
28秒前
37秒前
sxx发布了新的文献求助10
41秒前
量子星尘发布了新的文献求助10
42秒前
sxx完成签到,获得积分10
51秒前
lixuebin完成签到 ,获得积分10
56秒前
量子星尘发布了新的文献求助10
58秒前
黑大侠完成签到 ,获得积分10
58秒前
白天亮完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Jasen完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Captain_H完成签到,获得积分20
1分钟前
Captain_H发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
俊俊完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661074
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744064
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734518