Research on location-routing optimization of distribution center for emergency supplies based on IMOCS-LNS hybrid algorithm

布谷鸟搜索 数学优化 计算机科学 算法 数学 粒子群优化
作者
Xiangyang Ren,Lu Meng,Zhiqiang Liu,Xiujuan Zhang
出处
期刊:International Journal of Industrial Engineering Computations [Growing Science]
卷期号:15 (1): 69-88 被引量:1
标识
DOI:10.5267/j.ijiec.2023.11.003
摘要

This paper establishes a location-routing optimization model of the distribution center for emergency supplies with the goals of system reaction time, total cost of consumption, psychological fear of the populace in disaster-affected locations, and material usage rate. Where the excess time, demand, and penalty coefficient are the components of the penalty cost in the total consumption cost, and where the psychological panic of those in the affected area is represented by the psychological perception function of panic developed in accordance with the prospect theory. An improved hybrid multi-objective cuckoo-large-neighborhood search algorithm was then designed to introduce tent mapping, nonlinear inertia weights, elite strategies, congestion operators, and dynamically adjusted discovery probabilities into the standard multi-objective cuckoo optimization algorithm, which generates a new solution using a large-neighborhood search algorithm after discarding part of the solution with the discovery probability, and then accepts the current nondominated solution with dynamic probabilities. The paper uses the improved algorithm to solve Christofides69, an arithmetic example from the standard dataset of the LRP problem, and the results show that the solution provided by the improved algorithm outperforms the solutions provided by the standard multi-objective cuckoo search algorithm and the NSGA-II algorithm in terms of the total cost of dissipation, the level of psychological panic of the people in the affected area, the rate of utilization of the supplies, and the number of distribution centers open. Finally, the improved algorithm was used to analyze cases of different sizes separately, and it was found that the algorithm yielded better results and was therefore able to demonstrate its effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuan123qq邮箱完成签到,获得积分10
刚刚
lzy完成签到,获得积分10
1秒前
2秒前
只是虚瘦发布了新的文献求助10
3秒前
3秒前
猕猴桃发布了新的文献求助10
4秒前
尊敬的寄松完成签到,获得积分10
4秒前
乐乐应助shitou采纳,获得10
4秒前
5秒前
zjl发布了新的文献求助10
6秒前
Akim应助抹茶肥肠采纳,获得10
6秒前
陈泽完成签到,获得积分10
6秒前
深情安青应助Yu采纳,获得10
6秒前
随风5789发布了新的文献求助10
7秒前
wyj12342发布了新的文献求助50
7秒前
10秒前
王第一发布了新的文献求助10
10秒前
高大的沧海完成签到,获得积分10
11秒前
ZOE应助寂灭之时采纳,获得20
11秒前
Hello应助杨亚轩采纳,获得10
11秒前
12秒前
ff发布了新的文献求助10
12秒前
12秒前
12秒前
JamesPei应助zjl采纳,获得10
13秒前
nmm1111发布了新的文献求助10
14秒前
14秒前
抹茶芝士酸奶完成签到,获得积分10
15秒前
16秒前
终梦发布了新的文献求助10
16秒前
17秒前
18秒前
半梦发布了新的文献求助10
18秒前
脑洞疼应助小聪向前冲采纳,获得10
18秒前
19秒前
浮游应助努力采纳,获得10
19秒前
八月一发布了新的文献求助10
19秒前
微眠发布了新的文献求助10
20秒前
香蕉觅云应助刘泽洋采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
中国农业科学院王强研究员团队:食品多尺度结构与品质功能调控 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196196
求助须知:如何正确求助?哪些是违规求助? 4377899
关于积分的说明 13634562
捐赠科研通 4233399
什么是DOI,文献DOI怎么找? 2322209
邀请新用户注册赠送积分活动 1320345
关于科研通互助平台的介绍 1270730