EHR-HGCN: An Enhanced Hybrid Approach for Text Classification Using Heterogeneous Graph Convolutional Networks in Electronic Health Records

计算机科学 判决 人工智能 自然语言处理 图形 卷积神经网络 图形数据库 生物医学文本挖掘 文本图 文本挖掘 情报检索 理论计算机科学
作者
Guishen Wang,Xiaoxue Lou,Fang Guo,Devin Kwok,Chen Cao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1668-1679 被引量:6
标识
DOI:10.1109/jbhi.2023.3346210
摘要

Text classification is a central part of natural language processing, with important applications in understanding the knowledge behind biomedical texts including electronic health records (EHR). In this article, we propose a novel heterogeneous graph convolutional network method for classifying EHR texts. Our method, called EHR-HGCN, is able to combine context-sensitive word and sentence embeddings with structural sentence-level and word-level relation information to perform text classification. EHR-HGCN reframes EHR text classification as a graph classification task to better capture structural information about the document using a heterogeneous graph. To mine contextual information from a document, EHR-HGCN first applies a bidirectional recurrent neural network (BiRNN) on word embeddings obtained via Global Vectors for word representation (GloVe) to obtain context-sensitive word-level and sentence-level embeddings. To mine structural relationships from the document, EHR-HGCN then constructs a heterogeneous graph over the word and sentence embeddings, where sentence-word and word-word relationships are represented by graph edges. Finally, a heterogeneous graph convolutional neural network is used to classify documents by their graph representation. We evaluate EHR-HGCN on a variety of standard text classification benchmarks and find that EHR-HGCN has higher accuracy and F1-score than other representative machine learning and deep learning methods. We also apply EHR-HGCN to the MedLit benchmark and find it performs with high accuracy and F1-score on the task of section classification in EHR texts. Our ablation experiments show that the heterogeneous graph construction and heterogeneous graph convolutional network are critical to the performance of EHR-HGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
隐形曼青应助开始啦采纳,获得10
2秒前
汤泽琪发布了新的文献求助10
2秒前
昏睡的傻姑完成签到,获得积分10
3秒前
典雅的俊驰应助小猪古力采纳,获得10
3秒前
DTiverson发布了新的文献求助10
6秒前
CARL发布了新的文献求助10
6秒前
7秒前
8秒前
Ternura发布了新的文献求助10
8秒前
9秒前
9秒前
www完成签到,获得积分10
9秒前
深情安青应助汤泽琪采纳,获得20
10秒前
科研通AI5应助tt采纳,获得10
10秒前
11秒前
11秒前
14秒前
果子发布了新的文献求助10
15秒前
乌禅发布了新的文献求助10
15秒前
冷如松发布了新的文献求助10
17秒前
17秒前
可爱的函函应助iiiau采纳,获得10
19秒前
丘比特应助玉玉采纳,获得10
19秒前
gtm完成签到,获得积分0
20秒前
SYLH应助简单的凝蕊采纳,获得10
20秒前
sanwan发布了新的文献求助30
21秒前
23秒前
基尔霍夫完成签到,获得积分10
24秒前
羽梨发布了新的文献求助10
24秒前
25秒前
辰光完成签到,获得积分10
25秒前
25秒前
25秒前
认真汲发布了新的文献求助50
25秒前
27秒前
清茗发布了新的文献求助10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Conceptualizing 21st-Century Archives (2014) 238
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3693239
求助须知:如何正确求助?哪些是违规求助? 3243882
关于积分的说明 9845459
捐赠科研通 2955769
什么是DOI,文献DOI怎么找? 1620595
邀请新用户注册赠送积分活动 766609
科研通“疑难数据库(出版商)”最低求助积分说明 740427