EHR-HGCN: An Enhanced Hybrid Approach for Text Classification Using Heterogeneous Graph Convolutional Networks in Electronic Health Records

计算机科学 判决 人工智能 自然语言处理 图形 卷积神经网络 图形数据库 生物医学文本挖掘 文本图 文本挖掘 情报检索 理论计算机科学
作者
Guishen Wang,Xiaoxue Lou,Fang Guo,Devin Kwok,Chen Cao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1668-1679 被引量:3
标识
DOI:10.1109/jbhi.2023.3346210
摘要

Text classification is a central part of natural language processing, with important applications in understanding the knowledge behind biomedical texts including electronic health records (EHR). In this article, we propose a novel heterogeneous graph convolutional network method for classifying EHR texts. Our method, called EHR-HGCN, is able to combine context-sensitive word and sentence embeddings with structural sentence-level and word-level relation information to perform text classification. EHR-HGCN reframes EHR text classification as a graph classification task to better capture structural information about the document using a heterogeneous graph. To mine contextual information from a document, EHR-HGCN first applies a bidirectional recurrent neural network (BiRNN) on word embeddings obtained via Global Vectors for word representation (GloVe) to obtain context-sensitive word-level and sentence-level embeddings. To mine structural relationships from the document, EHR-HGCN then constructs a heterogeneous graph over the word and sentence embeddings, where sentence-word and word-word relationships are represented by graph edges. Finally, a heterogeneous graph convolutional neural network is used to classify documents by their graph representation. We evaluate EHR-HGCN on a variety of standard text classification benchmarks and find that EHR-HGCN has higher accuracy and F1-score than other representative machine learning and deep learning methods. We also apply EHR-HGCN to the MedLit benchmark and find it performs with high accuracy and F1-score on the task of section classification in EHR texts. Our ablation experiments show that the heterogeneous graph construction and heterogeneous graph convolutional network are critical to the performance of EHR-HGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaohong完成签到,获得积分0
1秒前
顾矜应助xss采纳,获得10
1秒前
Precipitate关注了科研通微信公众号
2秒前
帅气灯泡发布了新的文献求助30
2秒前
2秒前
3秒前
3秒前
无限雨文发布了新的文献求助10
4秒前
万能图书馆应助笨笨从凝采纳,获得10
4秒前
xiaoding发布了新的文献求助30
5秒前
5秒前
英俊的铭应助wq采纳,获得30
5秒前
肉圆发布了新的文献求助10
5秒前
爆米花应助小叮当采纳,获得10
5秒前
英姑应助玩家采纳,获得10
7秒前
张涛发布了新的文献求助10
7秒前
哎呀发布了新的文献求助10
8秒前
9秒前
9秒前
橙子fy16_完成签到,获得积分10
9秒前
大善人发布了新的文献求助10
10秒前
10秒前
11秒前
积极慕梅应助zengyiyong采纳,获得10
12秒前
12秒前
12秒前
ZZRR发布了新的文献求助10
13秒前
13秒前
13秒前
zjx0925完成签到,获得积分10
13秒前
13秒前
研友_VZG7GZ应助大善人采纳,获得10
13秒前
么么哒荼蘼酱完成签到,获得积分10
13秒前
14秒前
Jasper应助自由青柏采纳,获得10
14秒前
15秒前
15秒前
15秒前
xss发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721