医学
无线电技术
重复性
再现性
组内相关
人工智能
核医学
置信区间
放射科
数学
统计
内科学
计算机科学
作者
Olivia Prior,Carlos Macarro,Vı́ctor Navarro,Camilo Monreal,Marta Ligero,Alonso García-Ruiz,Garazi Serna,S. Simonetti,Irene Braña,María Vieito,Manuel Escobar,Jaume Capdevila,Annette T. Byrne,Rodrigo Dienstmann,Rodrigo A. Toledo,Paolo Nucíforo,Elena Garralda,Francesco Grussu,Kinga Bernatowicz,Raquel Pérez-López
出处
期刊:Radiology
[Radiological Society of North America]
日期:2024-01-31
卷期号:6 (2)
被引量:7
摘要
Purpose To identify precise three-dimensional radiomics features in CT images that enable computation of stable and biologically meaningful habitats with machine learning for cancer heterogeneity assessment. Materials and Methods This retrospective study included 2436 liver or lung lesions from 605 CT scans (November 2010–December 2021) in 331 patients with cancer (mean age, 64.5 years ± 10.1 [SD]; 185 male patients). Three-dimensional radiomics were computed from original and perturbed (simulated retest) images with different combinations of feature computation kernel radius and bin size. The lower 95% confidence limit (LCL) of the intraclass correlation coefficient (ICC) was used to measure repeatability and reproducibility. Precise features were identified by combining repeatability and reproducibility results (LCL of ICC ≥ 0.50). Habitats were obtained with Gaussian mixture models in original and perturbed data using precise radiomics features and compared with habitats obtained using all features. The Dice similarity coefficient (DSC) was used to assess habitat stability. Biologic correlates of CT habitats were explored in a case study, with a cohort of 13 patients with CT, multiparametric MRI, and tumor biopsies. Results Three-dimensional radiomics showed poor repeatability (LCL of ICC: median [IQR], 0.442 [0.312–0.516]) and poor reproducibility against kernel radius (LCL of ICC: median [IQR], 0.440 [0.33–0.526]) but excellent reproducibility against bin size (LCL of ICC: median [IQR], 0.929 [0.853–0.988]). Twenty-six radiomics features were precise, differing in lung and liver lesions. Habitats obtained with precise features (DSC: median [IQR], 0.601 [0.494–0.712] and 0.651 [0.52–0.784] for lung and liver lesions, respectively) were more stable than those obtained with all features (DSC: median [IQR], 0.532 [0.424–0.637] and 0.587 [0.465–0.703] for lung and liver lesions, respectively; P < .001). In the case study, CT habitats correlated quantitatively and qualitatively with heterogeneity observed in multiparametric MRI habitats and histology. Conclusion Precise three-dimensional radiomics features were identified on CT images that enabled tumor heterogeneity assessment through stable tumor habitat computation. Keywords: CT, Diffusion-weighted Imaging, Dynamic Contrast-enhanced MRI, MRI, Radiomics, Unsupervised Learning, Oncology, Liver, Lung Supplemental material is available for this article. © RSNA, 2024 See also the commentary by Sagreiya in this issue. An earlier incorrect version appeared online. This article was corrected on April 5, 2024.