Parallel hyper heuristic algorithm based on reinforcement learning for the corridor allocation problem and parallel row ordering problem

强化学习 启发式 启发式 模拟退火 计算机科学 超启发式 水准点(测量) 禁忌搜索 数学优化 零移动启发式 算法 人工智能 数学 地理 机器人学习 机器人 移动机器人 大地测量学
作者
Junqi Liu,Zeqiang Zhang,Silu Liu,Yu Zhang,Tengfei Wu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:56: 101977-101977 被引量:18
标识
DOI:10.1016/j.aei.2023.101977
摘要

Hyper heuristics is a relatively new optimisation algorithm. Numerous studies have reported that hyper heuristics are well applied in combinatorial optimisation problems. As a classic combinatorial optimisation problem, the row layout problem has not been publicly reported on applying hyper heuristics to its various sub-problems. To fill this gap, this study proposes a parallel hyper-heuristic approach based on reinforcement learning for corridor allocation problems and parallel row ordering problems. For the proposed algorithm, an outer layer parallel computing framework was constructed based on the encoding of the problem. The simulated annealing, tabu search, and variable neighbourhood algorithms were used in the algorithm as low-level heuristic operations, and Q-learning in reinforcement learning was used as a high-level strategy. A state space containing sequences and fitness values was designed. The algorithm performance was then evaluated for benchmark instances of the corridor allocation problem (37 groups) and parallel row ordering problem (80 groups). The results showed that, in most cases, the proposed algorithm provided a better solution than the best-known solutions in the literature. Finally, the meta-heuristic algorithm applied to three low-level heuristic operations is taken as three independent algorithms and compared with the proposed hyper-heuristic algorithm on four groups of parallel row ordering problem instances. The effectiveness of Q-learning in selection is illustrated by analysing the comparison results of the four algorithms and the number of calls of the three low-level heuristic operations in the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Flowers完成签到,获得积分10
2秒前
yuyu发布了新的文献求助10
3秒前
囧囧应助王涛采纳,获得30
4秒前
打打应助loong采纳,获得10
5秒前
5秒前
5秒前
坚定自信发布了新的文献求助10
6秒前
adonis_lu完成签到,获得积分10
6秒前
skr发布了新的文献求助10
7秒前
wangch198201发布了新的文献求助10
8秒前
111完成签到 ,获得积分10
9秒前
香蕉觅云应助4848采纳,获得10
10秒前
善学以致用应助LYY采纳,获得10
10秒前
影子发布了新的文献求助10
11秒前
NexusExplorer应助范范采纳,获得30
11秒前
倚栏听风完成签到 ,获得积分10
11秒前
海棠朵朵完成签到 ,获得积分10
12秒前
yuyu完成签到,获得积分10
15秒前
柯一一应助坚定自信采纳,获得10
17秒前
ding应助坚定自信采纳,获得10
17秒前
18秒前
彭于晏应助ranj采纳,获得10
18秒前
20秒前
21秒前
李健的小迷弟应助执笔采纳,获得10
23秒前
FashionBoy应助执笔采纳,获得10
23秒前
酷波er应助执笔采纳,获得10
23秒前
25秒前
25秒前
欢呼山雁发布了新的文献求助10
25秒前
诺安成长混合完成签到,获得积分10
26秒前
27秒前
豆奶发布了新的文献求助10
28秒前
aaaaaa发布了新的文献求助10
29秒前
skr发布了新的文献求助10
29秒前
Achu发布了新的文献求助10
30秒前
王学成发布了新的文献求助10
30秒前
Vivian完成签到,获得积分10
32秒前
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962657
求助须知:如何正确求助?哪些是违规求助? 3508612
关于积分的说明 11142006
捐赠科研通 3241384
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872916
科研通“疑难数据库(出版商)”最低求助积分说明 803517