Parallel hyper heuristic algorithm based on reinforcement learning for the corridor allocation problem and parallel row ordering problem

强化学习 启发式 启发式 模拟退火 计算机科学 超启发式 水准点(测量) 禁忌搜索 数学优化 零移动启发式 算法 人工智能 数学 地理 机器人学习 机器人 移动机器人 大地测量学
作者
Junqi Liu,Zeqiang Zhang,Silu Liu,Yu Zhang,Tengfei Wu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:56: 101977-101977 被引量:18
标识
DOI:10.1016/j.aei.2023.101977
摘要

Hyper heuristics is a relatively new optimisation algorithm. Numerous studies have reported that hyper heuristics are well applied in combinatorial optimisation problems. As a classic combinatorial optimisation problem, the row layout problem has not been publicly reported on applying hyper heuristics to its various sub-problems. To fill this gap, this study proposes a parallel hyper-heuristic approach based on reinforcement learning for corridor allocation problems and parallel row ordering problems. For the proposed algorithm, an outer layer parallel computing framework was constructed based on the encoding of the problem. The simulated annealing, tabu search, and variable neighbourhood algorithms were used in the algorithm as low-level heuristic operations, and Q-learning in reinforcement learning was used as a high-level strategy. A state space containing sequences and fitness values was designed. The algorithm performance was then evaluated for benchmark instances of the corridor allocation problem (37 groups) and parallel row ordering problem (80 groups). The results showed that, in most cases, the proposed algorithm provided a better solution than the best-known solutions in the literature. Finally, the meta-heuristic algorithm applied to three low-level heuristic operations is taken as three independent algorithms and compared with the proposed hyper-heuristic algorithm on four groups of parallel row ordering problem instances. The effectiveness of Q-learning in selection is illustrated by analysing the comparison results of the four algorithms and the number of calls of the three low-level heuristic operations in the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔魔胡胡胡萝卜完成签到,获得积分10
刚刚
今后应助wyn采纳,获得10
1秒前
大力哈密瓜完成签到,获得积分10
1秒前
星星之火可以燎原完成签到,获得积分10
1秒前
mama完成签到,获得积分10
1秒前
赵鹏完成签到,获得积分10
2秒前
静静在学呢完成签到,获得积分10
2秒前
PeizeWu发布了新的文献求助10
2秒前
007完成签到,获得积分10
2秒前
阔落发布了新的文献求助10
2秒前
好好学习完成签到,获得积分0
2秒前
longfang发布了新的文献求助10
3秒前
3秒前
诉衷情发布了新的文献求助10
3秒前
美女完成签到,获得积分10
3秒前
紫苏桃子姜完成签到,获得积分10
3秒前
syf完成签到 ,获得积分10
3秒前
谁在深海的大菠萝里完成签到,获得积分10
3秒前
111完成签到 ,获得积分10
3秒前
Shi完成签到,获得积分10
3秒前
guoyanna完成签到,获得积分10
3秒前
wu61发布了新的文献求助20
4秒前
天天快乐应助snow采纳,获得10
4秒前
lilia完成签到,获得积分10
4秒前
Kyrie完成签到,获得积分10
5秒前
obaica完成签到,获得积分10
5秒前
5秒前
fanlin完成签到,获得积分0
5秒前
赘婿应助cxr上劲了采纳,获得30
5秒前
李永宽完成签到,获得积分10
6秒前
6秒前
orixero应助马晓玲采纳,获得10
6秒前
懒123完成签到,获得积分10
6秒前
黄柯钦完成签到,获得积分20
6秒前
Orange应助唠叨的白曼采纳,获得10
7秒前
8秒前
在水一方应助rhopak采纳,获得30
8秒前
夨坕发布了新的文献求助10
8秒前
8秒前
XP416完成签到,获得积分0
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5189220
求助须知:如何正确求助?哪些是违规求助? 4373376
关于积分的说明 13616425
捐赠科研通 4226879
什么是DOI,文献DOI怎么找? 2318410
邀请新用户注册赠送积分活动 1317081
关于科研通互助平台的介绍 1266938