Parallel hyper heuristic algorithm based on reinforcement learning for the corridor allocation problem and parallel row ordering problem

强化学习 启发式 启发式 模拟退火 计算机科学 超启发式 水准点(测量) 禁忌搜索 数学优化 零移动启发式 算法 人工智能 数学 地理 机器人学习 机器人 移动机器人 大地测量学
作者
Junqi Liu,Zeqiang Zhang,Silu Liu,Yu Zhang,Tengfei Wu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:56: 101977-101977 被引量:27
标识
DOI:10.1016/j.aei.2023.101977
摘要

Hyper heuristics is a relatively new optimisation algorithm. Numerous studies have reported that hyper heuristics are well applied in combinatorial optimisation problems. As a classic combinatorial optimisation problem, the row layout problem has not been publicly reported on applying hyper heuristics to its various sub-problems. To fill this gap, this study proposes a parallel hyper-heuristic approach based on reinforcement learning for corridor allocation problems and parallel row ordering problems. For the proposed algorithm, an outer layer parallel computing framework was constructed based on the encoding of the problem. The simulated annealing, tabu search, and variable neighbourhood algorithms were used in the algorithm as low-level heuristic operations, and Q-learning in reinforcement learning was used as a high-level strategy. A state space containing sequences and fitness values was designed. The algorithm performance was then evaluated for benchmark instances of the corridor allocation problem (37 groups) and parallel row ordering problem (80 groups). The results showed that, in most cases, the proposed algorithm provided a better solution than the best-known solutions in the literature. Finally, the meta-heuristic algorithm applied to three low-level heuristic operations is taken as three independent algorithms and compared with the proposed hyper-heuristic algorithm on four groups of parallel row ordering problem instances. The effectiveness of Q-learning in selection is illustrated by analysing the comparison results of the four algorithms and the number of calls of the three low-level heuristic operations in the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzmyyds发布了新的文献求助10
1秒前
1秒前
1秒前
asqw完成签到,获得积分10
2秒前
YMH发布了新的文献求助10
3秒前
zzer发布了新的文献求助10
3秒前
tang123完成签到,获得积分10
3秒前
3d54s2完成签到,获得积分10
3秒前
小青椒应助潇洒的依凝采纳,获得30
3秒前
李海翔完成签到,获得积分10
4秒前
6秒前
99giddens发布了新的文献求助100
6秒前
6秒前
烤肠应助闪闪的熠彤采纳,获得20
6秒前
崔win完成签到,获得积分10
6秒前
lzl完成签到,获得积分10
7秒前
8秒前
Zx_1993应助小星星采纳,获得20
8秒前
FashionBoy应助huizi采纳,获得10
8秒前
无花果应助123采纳,获得10
8秒前
8秒前
9秒前
9秒前
lili发布了新的文献求助10
9秒前
科研通AI6应助齐齐采纳,获得10
10秒前
10秒前
LJY完成签到,获得积分20
11秒前
11秒前
激情的羊青完成签到,获得积分10
12秒前
马汉仓发布了新的文献求助20
12秒前
酷炫千凝完成签到 ,获得积分10
13秒前
子车茗应助ash采纳,获得30
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
许大脚完成签到 ,获得积分10
14秒前
14秒前
爆米花应助可颂采纳,获得10
15秒前
好运常在发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531988
求助须知:如何正确求助?哪些是违规求助? 4620728
关于积分的说明 14574699
捐赠科研通 4560496
什么是DOI,文献DOI怎么找? 2498874
邀请新用户注册赠送积分活动 1478787
关于科研通互助平台的介绍 1450096