Parallel hyper heuristic algorithm based on reinforcement learning for the corridor allocation problem and parallel row ordering problem

强化学习 启发式 启发式 模拟退火 计算机科学 超启发式 水准点(测量) 禁忌搜索 数学优化 零移动启发式 算法 人工智能 数学 地理 机器人学习 机器人 移动机器人 大地测量学
作者
Junqi Liu,Zeqiang Zhang,Silu Liu,Yu Zhang,Tengfei Wu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:56: 101977-101977 被引量:18
标识
DOI:10.1016/j.aei.2023.101977
摘要

Hyper heuristics is a relatively new optimisation algorithm. Numerous studies have reported that hyper heuristics are well applied in combinatorial optimisation problems. As a classic combinatorial optimisation problem, the row layout problem has not been publicly reported on applying hyper heuristics to its various sub-problems. To fill this gap, this study proposes a parallel hyper-heuristic approach based on reinforcement learning for corridor allocation problems and parallel row ordering problems. For the proposed algorithm, an outer layer parallel computing framework was constructed based on the encoding of the problem. The simulated annealing, tabu search, and variable neighbourhood algorithms were used in the algorithm as low-level heuristic operations, and Q-learning in reinforcement learning was used as a high-level strategy. A state space containing sequences and fitness values was designed. The algorithm performance was then evaluated for benchmark instances of the corridor allocation problem (37 groups) and parallel row ordering problem (80 groups). The results showed that, in most cases, the proposed algorithm provided a better solution than the best-known solutions in the literature. Finally, the meta-heuristic algorithm applied to three low-level heuristic operations is taken as three independent algorithms and compared with the proposed hyper-heuristic algorithm on four groups of parallel row ordering problem instances. The effectiveness of Q-learning in selection is illustrated by analysing the comparison results of the four algorithms and the number of calls of the three low-level heuristic operations in the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野元枫完成签到 ,获得积分10
1秒前
复杂的天玉完成签到,获得积分10
4秒前
全力以赴先生完成签到,获得积分10
4秒前
leaf完成签到 ,获得积分10
4秒前
科研临时工完成签到,获得积分10
5秒前
Jackcaosky完成签到 ,获得积分10
5秒前
5秒前
帅男完成签到,获得积分10
5秒前
dou完成签到,获得积分10
5秒前
浮游应助端庄从凝采纳,获得10
6秒前
笨笨慕山完成签到 ,获得积分10
6秒前
myth完成签到,获得积分10
6秒前
简单的白云完成签到,获得积分10
6秒前
勤劳善良的胖蜜蜂完成签到,获得积分10
6秒前
浮游应助简啦啦采纳,获得10
7秒前
充电宝应助大白采纳,获得10
7秒前
zyshao完成签到,获得积分10
7秒前
努力搬砖的小胡完成签到,获得积分10
8秒前
8秒前
欢呼白晴完成签到 ,获得积分10
9秒前
GD88完成签到,获得积分10
10秒前
积极的中蓝完成签到,获得积分10
10秒前
会飞的猪完成签到,获得积分10
10秒前
健壮的悟空完成签到 ,获得积分10
11秒前
long完成签到,获得积分10
11秒前
三寿完成签到,获得积分10
11秒前
APS完成签到,获得积分10
11秒前
健壮的思枫完成签到,获得积分10
12秒前
大力的宝川完成签到 ,获得积分10
12秒前
Iris完成签到 ,获得积分10
13秒前
point1990完成签到,获得积分10
14秒前
三三完成签到 ,获得积分10
15秒前
16秒前
蓝韵完成签到,获得积分10
16秒前
纯真冰露完成签到,获得积分10
17秒前
17秒前
pan完成签到,获得积分20
17秒前
xiaoxiao完成签到 ,获得积分10
19秒前
111完成签到,获得积分10
20秒前
liguanyu1078完成签到,获得积分10
20秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347799
求助须知:如何正确求助?哪些是违规求助? 4482040
关于积分的说明 13948663
捐赠科研通 4380425
什么是DOI,文献DOI怎么找? 2406961
邀请新用户注册赠送积分活动 1399538
关于科研通互助平台的介绍 1372763