Parallel hyper heuristic algorithm based on reinforcement learning for the corridor allocation problem and parallel row ordering problem

强化学习 启发式 启发式 模拟退火 计算机科学 超启发式 水准点(测量) 禁忌搜索 数学优化 零移动启发式 算法 人工智能 数学 地理 机器人学习 机器人 移动机器人 大地测量学
作者
Junqi Liu,Zeqiang Zhang,Silu Liu,Yu Zhang,Tengfei Wu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:56: 101977-101977 被引量:18
标识
DOI:10.1016/j.aei.2023.101977
摘要

Hyper heuristics is a relatively new optimisation algorithm. Numerous studies have reported that hyper heuristics are well applied in combinatorial optimisation problems. As a classic combinatorial optimisation problem, the row layout problem has not been publicly reported on applying hyper heuristics to its various sub-problems. To fill this gap, this study proposes a parallel hyper-heuristic approach based on reinforcement learning for corridor allocation problems and parallel row ordering problems. For the proposed algorithm, an outer layer parallel computing framework was constructed based on the encoding of the problem. The simulated annealing, tabu search, and variable neighbourhood algorithms were used in the algorithm as low-level heuristic operations, and Q-learning in reinforcement learning was used as a high-level strategy. A state space containing sequences and fitness values was designed. The algorithm performance was then evaluated for benchmark instances of the corridor allocation problem (37 groups) and parallel row ordering problem (80 groups). The results showed that, in most cases, the proposed algorithm provided a better solution than the best-known solutions in the literature. Finally, the meta-heuristic algorithm applied to three low-level heuristic operations is taken as three independent algorithms and compared with the proposed hyper-heuristic algorithm on four groups of parallel row ordering problem instances. The effectiveness of Q-learning in selection is illustrated by analysing the comparison results of the four algorithms and the number of calls of the three low-level heuristic operations in the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼圆杂铺完成签到,获得积分10
2秒前
2秒前
慕青应助QianqianZhang采纳,获得10
2秒前
3秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Qian_Xu完成签到,获得积分10
7秒前
7秒前
小璐发布了新的文献求助10
8秒前
linjiebro发布了新的文献求助10
8秒前
10秒前
10秒前
11秒前
怡然幻梅完成签到,获得积分10
11秒前
11秒前
田様应助张力航采纳,获得10
11秒前
香蕉觅云应助飘逸的凝云采纳,获得10
11秒前
飞云发布了新的文献求助10
11秒前
GingerF应助Wei采纳,获得100
11秒前
12秒前
Hunter完成签到,获得积分10
12秒前
13秒前
英姑应助小璐采纳,获得30
13秒前
14秒前
14秒前
15秒前
16秒前
Wy21完成签到 ,获得积分10
16秒前
16秒前
wx0816发布了新的文献求助10
17秒前
dayu大雨发布了新的文献求助10
17秒前
正直敏发布了新的文献求助10
17秒前
ljc完成签到,获得积分10
17秒前
憨憨发布了新的文献求助10
18秒前
独自受罪发布了新的文献求助10
18秒前
usr123完成签到 ,获得积分10
18秒前
咕咕鸡完成签到,获得积分20
18秒前
NULIFENDOU发布了新的文献求助10
18秒前
19秒前
才染完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424308
求助须知:如何正确求助?哪些是违规求助? 4538684
关于积分的说明 14163217
捐赠科研通 4455559
什么是DOI,文献DOI怎么找? 2443800
邀请新用户注册赠送积分活动 1434944
关于科研通互助平台的介绍 1412304