Brain tumor segmentation using JGate-AttResUNet – A novel deep learning approach

分割 计算机科学 流体衰减反转恢复 人工智能 深度学习 市场细分 神经影像学 磁共振成像 模式识别(心理学) 机器学习 放射科 医学 精神科 业务 营销
作者
T. Ruba,R. Tamilselvi,M. Parisa Beham
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104926-104926 被引量:9
标识
DOI:10.1016/j.bspc.2023.104926
摘要

Segmenting brain tumours in medical imaging is a crucial job. The ability to improve treatment options and boost patient survival rates depends on the early diagnosis of brain tumours. It is difficult and tedious task for segmenting the tumours for cancer diagnosis from a huge amount of MRI (Magnetic Resonance Imaging) images acquired in clinical practice. Therefore, automatic brain tumour segmentation techniques are needed. Deep learning algorithms for automatic tumor segmentation have lately grown in popularity as they produce cutting-edge results and are more effective than alternative techniques at solving this issue. Most of the recent researches used four MRI imaging modalities such as T1, T1c, T2, and FLAIR, because each delivers distinct and crucial characteristics relating to each area of the tumor. Even though several of the studies had better segmentation on the dataset utilized, they are having a most complicated network structure and they requires more training and testing time. As a result, a simple and novel JGate-AttResUNet network design is constructed in the proposed work to produce a robust and reliable brain tumour segmentation system. This method provides more effective and precise localization of tumor when compared with other models. For that J-Gate attention method is used to enhance the tumour localization. The experiments show that the suggested model generates competitive outcomes using the BRATS 2015 and 2019 dataset. For the BRATS 2015 and BRATS 2019 dataset, the designed model produces mean dice values of 0.896 and 0.913, respectively. The additional quantitative and qualitative assessments were discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的沛凝完成签到,获得积分10
刚刚
思源应助淇淇怪怪采纳,获得10
刚刚
领导范儿应助徐慕源采纳,获得10
刚刚
听粥完成签到,获得积分10
1秒前
高高迎蓉完成签到,获得积分10
1秒前
豆花完成签到,获得积分10
1秒前
SYLH应助风趣的无剑采纳,获得10
1秒前
悲伤水凝胶完成签到,获得积分10
1秒前
鲸鱼完成签到,获得积分10
3秒前
huangqinxue完成签到,获得积分10
3秒前
4秒前
4秒前
Tina完成签到,获得积分10
4秒前
电催化皮皮完成签到,获得积分10
4秒前
大模型应助阿蒙采纳,获得10
5秒前
duguqiubai4完成签到,获得积分10
5秒前
6秒前
meta完成签到,获得积分10
6秒前
大饼完成签到,获得积分10
7秒前
爆米花应助WJM采纳,获得10
7秒前
xiexuqin完成签到,获得积分10
7秒前
7秒前
silentJeremy发布了新的文献求助200
8秒前
JonyiCheng完成签到,获得积分10
8秒前
科研通AI5应助典雅又夏采纳,获得10
9秒前
风趣的无剑完成签到,获得积分10
9秒前
9秒前
anpucle发布了新的文献求助10
9秒前
跳不起来的大神完成签到 ,获得积分10
9秒前
科研乐色完成签到,获得积分10
9秒前
Drew完成签到,获得积分10
11秒前
挤爆沙丁鱼完成签到 ,获得积分10
11秒前
彭于晏应助fff采纳,获得10
11秒前
11秒前
Agernon应助yaya采纳,获得10
11秒前
四夕完成签到 ,获得积分10
12秒前
汉堡包应助执着的小蘑菇采纳,获得10
12秒前
西哈哈发布了新的文献求助10
12秒前
搜集达人应助酷炫大树采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678