Brain tumor segmentation using JGate-AttResUNet – A novel deep learning approach

分割 计算机科学 流体衰减反转恢复 人工智能 深度学习 市场细分 神经影像学 磁共振成像 模式识别(心理学) 机器学习 放射科 医学 精神科 业务 营销
作者
T. Ruba,R. Tamilselvi,M. Parisa Beham
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:84: 104926-104926 被引量:9
标识
DOI:10.1016/j.bspc.2023.104926
摘要

Segmenting brain tumours in medical imaging is a crucial job. The ability to improve treatment options and boost patient survival rates depends on the early diagnosis of brain tumours. It is difficult and tedious task for segmenting the tumours for cancer diagnosis from a huge amount of MRI (Magnetic Resonance Imaging) images acquired in clinical practice. Therefore, automatic brain tumour segmentation techniques are needed. Deep learning algorithms for automatic tumor segmentation have lately grown in popularity as they produce cutting-edge results and are more effective than alternative techniques at solving this issue. Most of the recent researches used four MRI imaging modalities such as T1, T1c, T2, and FLAIR, because each delivers distinct and crucial characteristics relating to each area of the tumor. Even though several of the studies had better segmentation on the dataset utilized, they are having a most complicated network structure and they requires more training and testing time. As a result, a simple and novel JGate-AttResUNet network design is constructed in the proposed work to produce a robust and reliable brain tumour segmentation system. This method provides more effective and precise localization of tumor when compared with other models. For that J-Gate attention method is used to enhance the tumour localization. The experiments show that the suggested model generates competitive outcomes using the BRATS 2015 and 2019 dataset. For the BRATS 2015 and BRATS 2019 dataset, the designed model produces mean dice values of 0.896 and 0.913, respectively. The additional quantitative and qualitative assessments were discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助熊熊采纳,获得10
1秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
汉堡包应助Dan采纳,获得30
4秒前
4秒前
FashionBoy应助qiangdoudou采纳,获得10
4秒前
yangzai发布了新的文献求助10
7秒前
鱼咬羊完成签到,获得积分10
7秒前
大君哥发布了新的文献求助10
9秒前
ding应助Micah采纳,获得10
9秒前
9秒前
lvjiahui发布了新的文献求助50
11秒前
14秒前
14秒前
甜甜发布了新的文献求助10
14秒前
明天肯定学习完成签到,获得积分20
15秒前
16秒前
Li完成签到,获得积分10
16秒前
wys发布了新的文献求助10
17秒前
桂力关注了科研通微信公众号
17秒前
CT完成签到,获得积分10
17秒前
彭于彦祖应助songlf23采纳,获得30
19秒前
华仔应助嘎嘎采纳,获得10
19秒前
19秒前
20秒前
YYB65发布了新的文献求助10
20秒前
言语发布了新的文献求助30
20秒前
万寿宫人完成签到,获得积分10
21秒前
伶俐的千柔完成签到,获得积分10
22秒前
Owen应助西早采纳,获得10
22秒前
22秒前
年轻的凝云完成签到 ,获得积分10
22秒前
22秒前
23秒前
26秒前
嘎嘎完成签到,获得积分20
26秒前
KaiZI发布了新的文献求助10
26秒前
27秒前
CT发布了新的文献求助10
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150