Brain tumor segmentation using JGate-AttResUNet – A novel deep learning approach

分割 计算机科学 流体衰减反转恢复 人工智能 深度学习 市场细分 神经影像学 磁共振成像 模式识别(心理学) 机器学习 放射科 医学 精神科 业务 营销
作者
T. Ruba,R. Tamilselvi,M. Parisa Beham
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104926-104926 被引量:9
标识
DOI:10.1016/j.bspc.2023.104926
摘要

Segmenting brain tumours in medical imaging is a crucial job. The ability to improve treatment options and boost patient survival rates depends on the early diagnosis of brain tumours. It is difficult and tedious task for segmenting the tumours for cancer diagnosis from a huge amount of MRI (Magnetic Resonance Imaging) images acquired in clinical practice. Therefore, automatic brain tumour segmentation techniques are needed. Deep learning algorithms for automatic tumor segmentation have lately grown in popularity as they produce cutting-edge results and are more effective than alternative techniques at solving this issue. Most of the recent researches used four MRI imaging modalities such as T1, T1c, T2, and FLAIR, because each delivers distinct and crucial characteristics relating to each area of the tumor. Even though several of the studies had better segmentation on the dataset utilized, they are having a most complicated network structure and they requires more training and testing time. As a result, a simple and novel JGate-AttResUNet network design is constructed in the proposed work to produce a robust and reliable brain tumour segmentation system. This method provides more effective and precise localization of tumor when compared with other models. For that J-Gate attention method is used to enhance the tumour localization. The experiments show that the suggested model generates competitive outcomes using the BRATS 2015 and 2019 dataset. For the BRATS 2015 and BRATS 2019 dataset, the designed model produces mean dice values of 0.896 and 0.913, respectively. The additional quantitative and qualitative assessments were discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助wwwzy采纳,获得10
1秒前
zizilu完成签到,获得积分10
1秒前
烟花应助子车半烟采纳,获得10
1秒前
科研通AI2S应助13508104971采纳,获得10
3秒前
5秒前
5秒前
5秒前
5秒前
WYY完成签到,获得积分10
6秒前
杨e发布了新的文献求助10
6秒前
7秒前
学术小沈关注了科研通微信公众号
8秒前
zhongu发布了新的文献求助10
8秒前
丘比特应助Ge采纳,获得10
9秒前
顺心的老五完成签到 ,获得积分10
9秒前
所所应助bfh采纳,获得10
9秒前
caltrate515发布了新的文献求助10
10秒前
热心小松鼠发布了新的文献求助200
10秒前
10秒前
10秒前
SciGPT应助安醉香采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
wgl发布了新的文献求助10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
科研通AI2S应助li采纳,获得10
11秒前
11秒前
天真的邴发布了新的文献求助10
11秒前
欧阳发布了新的文献求助10
12秒前
阿飞发布了新的文献求助10
13秒前
14秒前
北城发布了新的文献求助10
15秒前
sunrise_99完成签到,获得积分10
15秒前
15秒前
科研通AI2S应助Joely采纳,获得10
16秒前
kangkang完成签到,获得积分10
16秒前
渔舟唱晚完成签到,获得积分10
17秒前
星辰大海应助kyyy采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148271
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7834708
捐赠科研通 2456632
什么是DOI,文献DOI怎么找? 1307357
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655