Brain tumor segmentation using JGate-AttResUNet – A novel deep learning approach

分割 计算机科学 流体衰减反转恢复 人工智能 深度学习 市场细分 神经影像学 磁共振成像 模式识别(心理学) 机器学习 放射科 医学 精神科 业务 营销
作者
T. Ruba,R. Tamilselvi,M. Parisa Beham
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104926-104926 被引量:9
标识
DOI:10.1016/j.bspc.2023.104926
摘要

Segmenting brain tumours in medical imaging is a crucial job. The ability to improve treatment options and boost patient survival rates depends on the early diagnosis of brain tumours. It is difficult and tedious task for segmenting the tumours for cancer diagnosis from a huge amount of MRI (Magnetic Resonance Imaging) images acquired in clinical practice. Therefore, automatic brain tumour segmentation techniques are needed. Deep learning algorithms for automatic tumor segmentation have lately grown in popularity as they produce cutting-edge results and are more effective than alternative techniques at solving this issue. Most of the recent researches used four MRI imaging modalities such as T1, T1c, T2, and FLAIR, because each delivers distinct and crucial characteristics relating to each area of the tumor. Even though several of the studies had better segmentation on the dataset utilized, they are having a most complicated network structure and they requires more training and testing time. As a result, a simple and novel JGate-AttResUNet network design is constructed in the proposed work to produce a robust and reliable brain tumour segmentation system. This method provides more effective and precise localization of tumor when compared with other models. For that J-Gate attention method is used to enhance the tumour localization. The experiments show that the suggested model generates competitive outcomes using the BRATS 2015 and 2019 dataset. For the BRATS 2015 and BRATS 2019 dataset, the designed model produces mean dice values of 0.896 and 0.913, respectively. The additional quantitative and qualitative assessments were discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘零枫叶发布了新的文献求助10
刚刚
fossil完成签到,获得积分10
刚刚
TillySss完成签到,获得积分10
1秒前
1秒前
非而者厚应助应寒年采纳,获得10
2秒前
张张完成签到,获得积分10
3秒前
李健应助ZED采纳,获得10
3秒前
FashionBoy应助完美莆采纳,获得10
4秒前
书山有路勤为劲完成签到,获得积分10
4秒前
4秒前
Color发布了新的文献求助10
4秒前
5秒前
1230发布了新的文献求助10
5秒前
5秒前
叶轮机械完成签到,获得积分10
5秒前
555发布了新的文献求助10
5秒前
飘零枫叶完成签到,获得积分10
6秒前
单排轮完成签到,获得积分20
6秒前
彭于晏应助咯咯哒采纳,获得10
6秒前
7秒前
8秒前
LKC完成签到 ,获得积分10
8秒前
8秒前
wlscj举报anlikek求助涉嫌违规
8秒前
生动谷蓝完成签到,获得积分10
9秒前
所所应助Xie采纳,获得10
9秒前
史淼荷发布了新的文献求助10
10秒前
Uoueion发布了新的文献求助10
10秒前
746852776发布了新的文献求助10
10秒前
xieyujie发布了新的文献求助10
10秒前
洁净思枫发布了新的文献求助10
12秒前
斯文败类应助ZME采纳,获得10
12秒前
12秒前
传奇3应助Zzt采纳,获得10
13秒前
沐浴晨光完成签到 ,获得积分10
14秒前
14秒前
领导范儿应助曾经的安雁采纳,获得10
14秒前
科研通AI6应助ocelia采纳,获得10
14秒前
1230完成签到,获得积分10
15秒前
搞搞科研发布了新的文献求助20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329185
求助须知:如何正确求助?哪些是违规求助? 4468714
关于积分的说明 13906460
捐赠科研通 4361760
什么是DOI,文献DOI怎么找? 2396000
邀请新用户注册赠送积分活动 1389399
关于科研通互助平台的介绍 1360197