可解释性
计算机科学
人工智能
成对比较
机器学习
虚拟筛选
可视化
药物发现
特征(语言学)
药物靶点
过程(计算)
数据挖掘
生物信息学
化学
语言学
哲学
生物化学
生物
操作系统
作者
Ruiqiang Lu,Jun Wang,Pengyong Li,Yuquan Li,Shuoyan Tan,Yiting Pan,Huanxiang Liu,Peng Gao,Guotong Xie,Xiaojun Yao
摘要
Rapid and accurate prediction of drug-target affinity can accelerate and improve the drug discovery process. Recent studies show that deep learning models may have the potential to provide fast and accurate drug-target affinity prediction. However, the existing deep learning models still have their own disadvantages that make it difficult to complete the task satisfactorily. Complex-based models rely heavily on the time-consuming docking process, and complex-free models lacks interpretability. In this study, we introduced a novel knowledge-distillation insights drug-target affinity prediction model with feature fusion inputs to make fast, accurate and explainable predictions. We benchmarked the model on public affinity prediction and virtual screening dataset. The results show that it outperformed previous state-of-the-art models and achieved comparable performance to previous complex-based models. Finally, we study the interpretability of this model through visualization and find it can provide meaningful explanations for pairwise interaction. We believe this model can further improve the drug-target affinity prediction for its higher accuracy and reliable interpretability.
科研通智能强力驱动
Strongly Powered by AbleSci AI