Spatio-temporal graph mixformer for traffic forecasting

计算机科学 图形 依赖关系(UML) 节点(物理) 代表(政治) 人工智能 数据挖掘 机器学习 理论计算机科学 政治学 结构工程 政治 工程类 法学
作者
Mourad Lablack,Yanming Shen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:228: 120281-120281 被引量:38
标识
DOI:10.1016/j.eswa.2023.120281
摘要

Traffic forecasting is of great importance for intelligent transportation systems (ITS). Because of the intricacy implied in traffic behavior and the non-Euclidean nature of traffic data, it is challenging to give an accurate traffic prediction. Despite that previous studies considered the relationship between different nodes, the majority have relied on a static representation and failed to capture the dynamic node interactions over time. Additionally, prior studies employed RNN-based models to capture the temporal dependency. While RNNs are a popular choice for forecasting problems, they tend to be memory hungry and slow to train. Furthermore, recent studies start utilizing similarity algorithms to better express the implication of a node over the other. However, to our knowledge, none have explored the contribution of node i's past, over the future state of node j. In this paper, we propose a Spatio-Temporal Graph Mixformer (STGM) network, a highly optimized model with low memory footprint. We address the aforementioned limits by utilizing a novel attention mechanism to capture the correlation between temporal and spatial dependencies. Specifically, we use convolution layers with a variable fields of view for each head to capture long–short term temporal dependency. Additionally, we train an estimator model that express the contribution of a node over the desired prediction. The estimation is fed alongside a distance matrix to the attention mechanism. Meanwhile, we use a gated mechanism and a mixer layer to further select and incorporate the different perspectives. Extensive experiments show that the proposed model enjoys a performance gain compared to the baselines while maintaining the lowest parameter counts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助没烦恼采纳,获得30
1秒前
akakns完成签到 ,获得积分10
1秒前
3秒前
lll应助ZZ采纳,获得20
5秒前
富婆嘉嘉子完成签到,获得积分10
10秒前
11秒前
Lysine发布了新的文献求助10
11秒前
11秒前
Lucas应助七七采纳,获得20
14秒前
慕青应助你好采纳,获得10
14秒前
勤qin完成签到 ,获得积分10
15秒前
科研狗发布了新的文献求助10
15秒前
15秒前
lly完成签到,获得积分10
17秒前
18秒前
美好雁丝发布了新的文献求助10
20秒前
阿苏完成签到 ,获得积分10
21秒前
21秒前
22秒前
陶醉的烤鸡完成签到 ,获得积分10
23秒前
独特的沛凝完成签到,获得积分10
24秒前
奋斗机器猫完成签到 ,获得积分10
27秒前
细心夏瑶完成签到,获得积分10
27秒前
28秒前
慕青应助流年采纳,获得20
29秒前
30秒前
CC完成签到 ,获得积分10
32秒前
32秒前
李爱国应助科研界星辰采纳,获得10
32秒前
32秒前
33秒前
34秒前
moon完成签到,获得积分20
34秒前
35秒前
徐小二发布了新的文献求助10
35秒前
SCI完成签到 ,获得积分10
36秒前
changping应助zh采纳,获得10
37秒前
MOF发布了新的文献求助10
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511