Spatio-temporal graph mixformer for traffic forecasting

计算机科学 图形 依赖关系(UML) 节点(物理) 代表(政治) 人工智能 数据挖掘 机器学习 理论计算机科学 政治学 结构工程 政治 工程类 法学
作者
Mourad Lablack,Yanming Shen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:228: 120281-120281 被引量:38
标识
DOI:10.1016/j.eswa.2023.120281
摘要

Traffic forecasting is of great importance for intelligent transportation systems (ITS). Because of the intricacy implied in traffic behavior and the non-Euclidean nature of traffic data, it is challenging to give an accurate traffic prediction. Despite that previous studies considered the relationship between different nodes, the majority have relied on a static representation and failed to capture the dynamic node interactions over time. Additionally, prior studies employed RNN-based models to capture the temporal dependency. While RNNs are a popular choice for forecasting problems, they tend to be memory hungry and slow to train. Furthermore, recent studies start utilizing similarity algorithms to better express the implication of a node over the other. However, to our knowledge, none have explored the contribution of node i's past, over the future state of node j. In this paper, we propose a Spatio-Temporal Graph Mixformer (STGM) network, a highly optimized model with low memory footprint. We address the aforementioned limits by utilizing a novel attention mechanism to capture the correlation between temporal and spatial dependencies. Specifically, we use convolution layers with a variable fields of view for each head to capture long–short term temporal dependency. Additionally, we train an estimator model that express the contribution of a node over the desired prediction. The estimation is fed alongside a distance matrix to the attention mechanism. Meanwhile, we use a gated mechanism and a mixer layer to further select and incorporate the different perspectives. Extensive experiments show that the proposed model enjoys a performance gain compared to the baselines while maintaining the lowest parameter counts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助鲸鱼打滚采纳,获得10
刚刚
小马甲应助啵啵采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
Camellia发布了新的文献求助10
1秒前
汉堡包应助元煜祺采纳,获得10
1秒前
orixero应助三乐采纳,获得10
1秒前
阿托品完成签到,获得积分10
1秒前
少年去游荡完成签到,获得积分10
2秒前
纯真心情完成签到,获得积分20
2秒前
FashionBoy应助sx采纳,获得10
2秒前
奋斗花生发布了新的文献求助10
3秒前
3秒前
小猴子完成签到,获得积分10
3秒前
3秒前
3秒前
ll发布了新的文献求助10
4秒前
Mic应助engine采纳,获得10
4秒前
why完成签到 ,获得积分10
4秒前
土土b发布了新的文献求助10
4秒前
hqq发布了新的文献求助10
4秒前
无趣发布了新的文献求助30
4秒前
4秒前
酷波er应助追光采纳,获得10
5秒前
开朗发卡完成签到,获得积分10
6秒前
Lucas应助蓝淡定采纳,获得10
6秒前
Amosummer发布了新的文献求助10
6秒前
梓翔发布了新的文献求助10
6秒前
7秒前
8秒前
灵巧的嚣发布了新的文献求助100
8秒前
可可应助kong采纳,获得200
8秒前
大致若鱼应助hbzyydx46采纳,获得10
8秒前
dunk芒果发布了新的文献求助10
9秒前
jungle完成签到,获得积分10
9秒前
campus完成签到,获得积分10
9秒前
kissssp完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531309
求助须知:如何正确求助?哪些是违规求助? 4620136
关于积分的说明 14571914
捐赠科研通 4559695
什么是DOI,文献DOI怎么找? 2498561
邀请新用户注册赠送积分活动 1478526
关于科研通互助平台的介绍 1449957