Spatio-temporal graph mixformer for traffic forecasting

计算机科学 图形 依赖关系(UML) 节点(物理) 代表(政治) 人工智能 数据挖掘 机器学习 理论计算机科学 政治学 结构工程 政治 工程类 法学
作者
Mourad Lablack,Yanming Shen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:228: 120281-120281 被引量:38
标识
DOI:10.1016/j.eswa.2023.120281
摘要

Traffic forecasting is of great importance for intelligent transportation systems (ITS). Because of the intricacy implied in traffic behavior and the non-Euclidean nature of traffic data, it is challenging to give an accurate traffic prediction. Despite that previous studies considered the relationship between different nodes, the majority have relied on a static representation and failed to capture the dynamic node interactions over time. Additionally, prior studies employed RNN-based models to capture the temporal dependency. While RNNs are a popular choice for forecasting problems, they tend to be memory hungry and slow to train. Furthermore, recent studies start utilizing similarity algorithms to better express the implication of a node over the other. However, to our knowledge, none have explored the contribution of node i's past, over the future state of node j. In this paper, we propose a Spatio-Temporal Graph Mixformer (STGM) network, a highly optimized model with low memory footprint. We address the aforementioned limits by utilizing a novel attention mechanism to capture the correlation between temporal and spatial dependencies. Specifically, we use convolution layers with a variable fields of view for each head to capture long–short term temporal dependency. Additionally, we train an estimator model that express the contribution of a node over the desired prediction. The estimation is fed alongside a distance matrix to the attention mechanism. Meanwhile, we use a gated mechanism and a mixer layer to further select and incorporate the different perspectives. Extensive experiments show that the proposed model enjoys a performance gain compared to the baselines while maintaining the lowest parameter counts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盲目逛恋完成签到,获得积分10
1秒前
stone完成签到,获得积分10
1秒前
研友_Zlx3aZ发布了新的文献求助10
1秒前
爆米花应助Sayhai采纳,获得10
1秒前
1秒前
1秒前
qinyi完成签到 ,获得积分10
2秒前
3秒前
sily科研完成签到,获得积分10
3秒前
zsy真帅呀发布了新的文献求助10
3秒前
甄晓溪完成签到,获得积分20
4秒前
Cara发布了新的文献求助30
4秒前
研友_Z1WvKL发布了新的文献求助10
5秒前
5秒前
花汀酒完成签到 ,获得积分10
5秒前
JamesPei应助AIA7采纳,获得10
5秒前
6秒前
yzg完成签到,获得积分10
6秒前
正午发布了新的文献求助30
6秒前
cwm发布了新的文献求助10
7秒前
8秒前
传奇3应助caicai采纳,获得10
8秒前
包容元芹发布了新的文献求助10
8秒前
苹果雪萍发布了新的文献求助10
9秒前
77发布了新的文献求助10
10秒前
烟花应助机智亦巧采纳,获得10
10秒前
二仙桥成华大道完成签到,获得积分10
10秒前
852应助elmk采纳,获得30
10秒前
瘦瘦冰凡发布了新的文献求助10
10秒前
搜集达人应助小凡采纳,获得10
10秒前
科研通AI6应助896889655采纳,获得10
11秒前
11秒前
11秒前
科研通AI6应助合适苗条采纳,获得10
12秒前
12秒前
12秒前
香蕉觅云应助隐形寄柔采纳,获得10
13秒前
eraygt完成签到,获得积分10
13秒前
bkagyin应助xinxin采纳,获得10
13秒前
ZZ张完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646235
求助须知:如何正确求助?哪些是违规求助? 4770584
关于积分的说明 15033924
捐赠科研通 4804968
什么是DOI,文献DOI怎么找? 2569335
邀请新用户注册赠送积分活动 1526419
关于科研通互助平台的介绍 1485810