Spatio-temporal graph mixformer for traffic forecasting

计算机科学 图形 依赖关系(UML) 节点(物理) 代表(政治) 人工智能 数据挖掘 机器学习 理论计算机科学 政治学 结构工程 政治 工程类 法学
作者
Mourad Lablack,Yanming Shen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:228: 120281-120281 被引量:31
标识
DOI:10.1016/j.eswa.2023.120281
摘要

Traffic forecasting is of great importance for intelligent transportation systems (ITS). Because of the intricacy implied in traffic behavior and the non-Euclidean nature of traffic data, it is challenging to give an accurate traffic prediction. Despite that previous studies considered the relationship between different nodes, the majority have relied on a static representation and failed to capture the dynamic node interactions over time. Additionally, prior studies employed RNN-based models to capture the temporal dependency. While RNNs are a popular choice for forecasting problems, they tend to be memory hungry and slow to train. Furthermore, recent studies start utilizing similarity algorithms to better express the implication of a node over the other. However, to our knowledge, none have explored the contribution of node i's past, over the future state of node j. In this paper, we propose a Spatio-Temporal Graph Mixformer (STGM) network, a highly optimized model with low memory footprint. We address the aforementioned limits by utilizing a novel attention mechanism to capture the correlation between temporal and spatial dependencies. Specifically, we use convolution layers with a variable fields of view for each head to capture long–short term temporal dependency. Additionally, we train an estimator model that express the contribution of a node over the desired prediction. The estimation is fed alongside a distance matrix to the attention mechanism. Meanwhile, we use a gated mechanism and a mixer layer to further select and incorporate the different perspectives. Extensive experiments show that the proposed model enjoys a performance gain compared to the baselines while maintaining the lowest parameter counts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助积极灵薇采纳,获得10
刚刚
JamesPei应助无限飞丹采纳,获得10
刚刚
独特乘云发布了新的文献求助10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
CAOHOU应助科研通管家采纳,获得10
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
Noyo应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
tramp应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
tramp应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
领导范儿应助Nozomi采纳,获得10
4秒前
小马甲应助YJ888采纳,获得10
4秒前
香蕉觅云应助jialiu采纳,获得10
4秒前
cosmos完成签到,获得积分10
5秒前
大个应助独特乘云采纳,获得10
6秒前
6秒前
小晓发布了新的文献求助10
6秒前
wonder123发布了新的文献求助10
8秒前
老实起哞完成签到,获得积分10
8秒前
10秒前
11秒前
gsj发布了新的文献求助10
12秒前
13秒前
所所应助wonder123采纳,获得10
13秒前
14秒前
14秒前
14秒前
田様应助忆茶戏采纳,获得10
14秒前
wss完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174