Spatio-temporal graph mixformer for traffic forecasting

计算机科学 图形 依赖关系(UML) 节点(物理) 代表(政治) 人工智能 数据挖掘 机器学习 理论计算机科学 政治学 结构工程 政治 工程类 法学
作者
Mourad Lablack,Yanming Shen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:228: 120281-120281 被引量:38
标识
DOI:10.1016/j.eswa.2023.120281
摘要

Traffic forecasting is of great importance for intelligent transportation systems (ITS). Because of the intricacy implied in traffic behavior and the non-Euclidean nature of traffic data, it is challenging to give an accurate traffic prediction. Despite that previous studies considered the relationship between different nodes, the majority have relied on a static representation and failed to capture the dynamic node interactions over time. Additionally, prior studies employed RNN-based models to capture the temporal dependency. While RNNs are a popular choice for forecasting problems, they tend to be memory hungry and slow to train. Furthermore, recent studies start utilizing similarity algorithms to better express the implication of a node over the other. However, to our knowledge, none have explored the contribution of node i's past, over the future state of node j. In this paper, we propose a Spatio-Temporal Graph Mixformer (STGM) network, a highly optimized model with low memory footprint. We address the aforementioned limits by utilizing a novel attention mechanism to capture the correlation between temporal and spatial dependencies. Specifically, we use convolution layers with a variable fields of view for each head to capture long–short term temporal dependency. Additionally, we train an estimator model that express the contribution of a node over the desired prediction. The estimation is fed alongside a distance matrix to the attention mechanism. Meanwhile, we use a gated mechanism and a mixer layer to further select and incorporate the different perspectives. Extensive experiments show that the proposed model enjoys a performance gain compared to the baselines while maintaining the lowest parameter counts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
望望旺仔牛奶完成签到,获得积分10
刚刚
奇点完成签到 ,获得积分10
1秒前
Lucas应助丫丫采纳,获得10
1秒前
zero完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
hehsk完成签到,获得积分10
3秒前
小龙完成签到,获得积分10
3秒前
李俊凯完成签到 ,获得积分10
3秒前
妖哥完成签到,获得积分10
3秒前
3秒前
4秒前
123发布了新的文献求助10
4秒前
罗是一完成签到,获得积分10
4秒前
4秒前
且听风吟完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
lzcnextdoor完成签到,获得积分10
5秒前
李爱国应助lelelelele采纳,获得10
5秒前
6秒前
zjw应助W66采纳,获得10
6秒前
嘻嘻完成签到,获得积分10
6秒前
WATQ完成签到,获得积分10
6秒前
Incubus完成签到,获得积分10
7秒前
江洋小偷完成签到,获得积分10
7秒前
复杂大象完成签到,获得积分10
8秒前
Gavin完成签到,获得积分10
8秒前
陌上尘开完成签到 ,获得积分10
8秒前
LAYWL发布了新的文献求助10
8秒前
zmmm发布了新的文献求助10
8秒前
共享精神应助yuanjingnan采纳,获得10
8秒前
李kazuya完成签到 ,获得积分10
9秒前
江洋小偷发布了新的文献求助10
9秒前
10秒前
Raymond完成签到,获得积分0
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743