Spatio-temporal graph mixformer for traffic forecasting

计算机科学 图形 依赖关系(UML) 节点(物理) 代表(政治) 人工智能 数据挖掘 机器学习 理论计算机科学 政治学 结构工程 政治 工程类 法学
作者
Mourad Lablack,Yanming Shen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:228: 120281-120281 被引量:38
标识
DOI:10.1016/j.eswa.2023.120281
摘要

Traffic forecasting is of great importance for intelligent transportation systems (ITS). Because of the intricacy implied in traffic behavior and the non-Euclidean nature of traffic data, it is challenging to give an accurate traffic prediction. Despite that previous studies considered the relationship between different nodes, the majority have relied on a static representation and failed to capture the dynamic node interactions over time. Additionally, prior studies employed RNN-based models to capture the temporal dependency. While RNNs are a popular choice for forecasting problems, they tend to be memory hungry and slow to train. Furthermore, recent studies start utilizing similarity algorithms to better express the implication of a node over the other. However, to our knowledge, none have explored the contribution of node i's past, over the future state of node j. In this paper, we propose a Spatio-Temporal Graph Mixformer (STGM) network, a highly optimized model with low memory footprint. We address the aforementioned limits by utilizing a novel attention mechanism to capture the correlation between temporal and spatial dependencies. Specifically, we use convolution layers with a variable fields of view for each head to capture long–short term temporal dependency. Additionally, we train an estimator model that express the contribution of a node over the desired prediction. The estimation is fed alongside a distance matrix to the attention mechanism. Meanwhile, we use a gated mechanism and a mixer layer to further select and incorporate the different perspectives. Extensive experiments show that the proposed model enjoys a performance gain compared to the baselines while maintaining the lowest parameter counts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打工dog发布了新的文献求助10
1秒前
科研小白菜完成签到,获得积分10
1秒前
1秒前
3秒前
Lucas应助Judy采纳,获得10
3秒前
3秒前
Abyxwz完成签到,获得积分10
3秒前
4秒前
聪慧的怀绿完成签到,获得积分10
5秒前
5秒前
lee完成签到 ,获得积分10
6秒前
7秒前
kiminonawa应助甜甜谷波采纳,获得10
7秒前
Abyxwz发布了新的文献求助10
7秒前
7秒前
8秒前
wly发布了新的文献求助10
8秒前
8秒前
9秒前
Una完成签到,获得积分10
9秒前
小野发布了新的文献求助10
9秒前
852应助艾可白采纳,获得10
10秒前
李爱国应助ST采纳,获得10
10秒前
酷波er应助哒哒哒采纳,获得10
11秒前
11秒前
GXWFDC完成签到 ,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
14秒前
虎啊虎啊发布了新的文献求助10
14秒前
14秒前
墨染完成签到 ,获得积分10
15秒前
15秒前
16秒前
浮游应助科研通管家采纳,获得10
16秒前
Return应助科研通管家采纳,获得10
16秒前
rebubu应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800