Toward Understanding the Composition–Structure Relationship of Hybrid Organic Lead Iodide Compounds: Impact from Secondary Structures of Organic Cations

位阻效应 化学 氢键 碘化物 结晶学 折叠(DSP实现) 无机化学 有机化学 分子 电气工程 工程类
作者
Ruichen Wan,Ruiyang Lyu,Curtis E. Moore,Yiying Wu
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (18): 8880-8886 被引量:1
标识
DOI:10.1021/acs.jpcc.3c01260
摘要

In studies of low-dimensional hybrid organic lead halide compounds (HOLHCs), understanding the composition–structure relationship is important for controlling their optical, optoelectronic, spintronic, and ferroelectric properties. Prior knowledge usually considers the primary structure of organic cations to predict the dimensionality of the HOLHCs. However, with the existence of noncovalent interactions (especially hydrogen bonding), the structure-directing organic cations may form secondary structures, which change their shape and steric hindrance when the cations are packed inside the crystal structure. To the best of our knowledge, the role of secondary structures of organic cations has not been systematically investigated yet. Herein, we report a systematic investigation of the influence from the secondary structure of ammonium ions induced by hydrogen bonding. We use a series of alkoxy-ammoniums as the model system to investigate how the NH···O hydrogen bonding induces the folding of the organic cations into ring structures. The folding increases the steric hindrance around the NH3+ end and thus reduces the dimensionality of the hybrid organic lead iodide compounds. By changing the linker length between alkoxy and ammonium groups, we have determined that the seven-member ring forms the strongest intramolecular hydrogen bonding. More intriguingly, the folded secondary structures become chiral, which provides a new approach for creating symmetry-breaking chiral materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小石完成签到,获得积分10
刚刚
独特的飞烟完成签到,获得积分10
刚刚
刚刚
科研猪完成签到,获得积分10
1秒前
大个应助qqwxp采纳,获得10
1秒前
jennifercui完成签到,获得积分10
1秒前
SXM完成签到,获得积分10
1秒前
酷酷的起眸完成签到,获得积分10
2秒前
细腻沅完成签到,获得积分10
2秒前
LILING完成签到,获得积分10
2秒前
123发布了新的文献求助10
3秒前
赖床艺术家完成签到,获得积分10
4秒前
领导范儿应助通~采纳,获得10
5秒前
端庄的黑米完成签到,获得积分10
5秒前
5秒前
领导范儿应助坤坤采纳,获得10
5秒前
6秒前
神勇的雅香应助司徒迎曼采纳,获得10
6秒前
6秒前
bkagyin应助椰子采纳,获得10
6秒前
Owen应助舒服的茹嫣采纳,获得10
6秒前
呼吸之野应助按住心动采纳,获得20
7秒前
7秒前
身为风帆发布了新的文献求助10
7秒前
changjiaren完成签到,获得积分10
7秒前
风中的怜阳完成签到,获得积分10
8秒前
自信号厂完成签到 ,获得积分10
8秒前
小蘑菇应助ccc采纳,获得10
9秒前
shuo完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
aich完成签到,获得积分10
10秒前
上官若男应助YE采纳,获得10
11秒前
Jasper应助YaoX采纳,获得10
11秒前
天天快乐应助威武绿真采纳,获得10
11秒前
MADKAI发布了新的文献求助10
11秒前
12秒前
慕青应助April采纳,获得10
12秒前
123完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740