Synergy of phosphorus vacancies and build-in electric field into NiCo/NiCoP Mott-Schottky integrated electrode for enhanced water splitting performance

双功能 材料科学 肖特基势垒 肖特基二极管 分解水 空位缺陷 异质结 阳极 化学物理 光电子学 电极 化学 催化作用 物理化学 结晶学 光催化 生物化学 二极管
作者
Xiaochen Zhang,Hui Xue,Jing Sun,Niankun Guo,Tianshan Song,Jiawen Sun,Yi‐Ru Hao,Qin Wang
出处
期刊:Chinese Chemical Letters [Elsevier]
卷期号:35 (2): 108519-108519 被引量:15
标识
DOI:10.1016/j.cclet.2023.108519
摘要

Vacancy engineering and Mott-Schottky heterostructure can accelerate charge transfer, regulate adsorption energy of reaction intermediates, and provide additional active sites, which are regarded as valid means for improving catalytic activity. However, the underlying mechanism of synergistic regulation of interfacial charge transfer and optimization of electrocatalytic activity by combining vacancy and Mott-Schottky junction remains unclear. Herein, the growth of a bifunctional NiCo/NiCoP Mott-Schottky electrode with abundant phosphorus vacancies on foam nickel (NF) has been synthesized through continuous phosphating and reduction processes. The obtained NiCo/NiCoP heterojunctions show remarkable OER and HER activities, and the overpotentials for OER and HER are as low as 117 and 60 mV at 10 mA/cm2 in 1 mol/L KOH, respectively. Moreover, as both the cathode and anode of overall water splitting, the voltage of the bifunctional NiCo/NiCoP electrocatalyst is 1.44 V at 10 mA/cm2, which are far exceeding the benchmark commercial electrodes. DFT theoretical calculation results confirm that the phosphorus vacancies and build-in electric field can effectively accelerate ion and electron transfer between NiCo alloy and NiCoP semiconductor, tailor the electronic structure of the metal centers and lower the Gibbs free energy of the intermediates. Furthermore, the unique self-supported integrated structure is beneficial to facilitate the exposure of the active site, avoid catalyst shedding, thus improving the activity and structural stability of NiCo/NiCoP. This study provides an avenue for the controllable synthesis and performance optimization of Mott-Schottky electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
国服懒羊羊完成签到,获得积分10
1秒前
领导范儿应助ZTT采纳,获得10
1秒前
moon发布了新的文献求助10
2秒前
小宇发布了新的文献求助10
2秒前
2秒前
Neon0524完成签到 ,获得积分10
2秒前
HEIKU应助颜绫采纳,获得50
3秒前
3秒前
Jiayou Zhang完成签到,获得积分10
3秒前
高高迎蓉发布了新的文献求助10
3秒前
徐霜完成签到 ,获得积分10
4秒前
DDXXC完成签到,获得积分10
4秒前
忧郁的续完成签到,获得积分20
4秒前
陈强发布了新的文献求助30
4秒前
wzg666完成签到,获得积分10
5秒前
5秒前
爆米花应助找不到采纳,获得10
5秒前
任性的梦菲应助圈圈采纳,获得30
5秒前
6秒前
Ava应助踏实的烙采纳,获得10
6秒前
7秒前
ChangSZ应助speedness采纳,获得10
7秒前
自由基不能聚合完成签到,获得积分10
7秒前
shone发布了新的文献求助10
8秒前
烟花应助yug采纳,获得10
8秒前
科研cc发布了新的文献求助10
8秒前
你仔细听发布了新的文献求助10
8秒前
路之遥兮发布了新的文献求助10
9秒前
一平发布了新的文献求助10
9秒前
jerry完成签到,获得积分20
9秒前
搞怪便当完成签到,获得积分10
9秒前
9秒前
9秒前
布丁仔完成签到,获得积分10
10秒前
10秒前
10秒前
Hu111完成签到,获得积分10
10秒前
10秒前
关琦完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672