Calibration transfer for near-infrared (NIR) spectroscopy based on local preserving projection

校准 投影(关系代数) 主成分分析 计算机科学 光谱空间 人工智能 模式识别(心理学) 算法 非线性降维 数学 降维 统计 纯数学
作者
Jun Bin,Xiu‐Fang Yan,Renxiang Liu,Chao Kang,Yi Chen
出处
期刊:Vibrational Spectroscopy [Elsevier BV]
卷期号:126: 103538-103538 被引量:2
标识
DOI:10.1016/j.vibspec.2023.103538
摘要

Calibration transfer is a mathematical or statistical technique to solve the universality of near-infrared (NIR) spectroscopy, which is particularly important in practical applications. Therefore, a calibration transfer method based on local preserving projection (CTLPP) to correct spectral differences was proposed in this paper. Local preserving projection (LPP) is a linear feature extraction algorithm, which is a linear approximation of Laplacian Eigenmap manifold learning. It can not only overcome the shortcomings of linear feature extraction algorithms which are difficult to maintain the nonlinear manifold of the original data, but also solve the problem that nonlinear manifold learning methods are difficult to directly map new samples, which is conducive to building the conversion relationship between the source spectra and the target spectra. The transfer performance of the proposed method was evaluated in three datasets, and compared with five approaches, namely, piecewise direct standardization (PDS), calibration transfer based on independent component analysis (CTICA), spectral space transformation (SST), principal components canonical correlation analysis (PC-CCA) and calibration transfer based on neighborhood preserving embedding (CTNPE). Experimental results indicated that this proposed method can successfully correct the detection spectra among different apparatus. In addition, it can obtain relatively low prediction root mean square error (RMSEP). Therefore, the comprehensive research conducted in this work demonstrated that the proposed method is a promising calibration transfer method in NIR applications, which can provide a reference when sharing the NIR spectral models with more and more instruments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大意的绿蓉完成签到,获得积分10
刚刚
orixero应助hjhhje采纳,获得10
1秒前
啦啦啦发布了新的文献求助10
1秒前
1秒前
粿粿一定行完成签到 ,获得积分10
2秒前
NexusExplorer应助明理芷容采纳,获得10
2秒前
4秒前
4秒前
Zz发布了新的文献求助10
4秒前
画图难足发布了新的文献求助50
5秒前
李月发布了新的文献求助10
6秒前
wsq发布了新的文献求助10
6秒前
英俊的铭应助zpw123采纳,获得10
6秒前
orixero应助yankai采纳,获得10
7秒前
刘向珊完成签到 ,获得积分10
7秒前
7秒前
Martin应助cyy采纳,获得10
8秒前
8秒前
情怀应助逆旅如行人采纳,获得10
8秒前
aurora应助干雅柏采纳,获得10
9秒前
ma完成签到,获得积分10
9秒前
ww完成签到,获得积分10
9秒前
ZIYE发布了新的文献求助10
10秒前
小二郎应助认真的一刀采纳,获得10
10秒前
tong完成签到,获得积分10
12秒前
科研通AI2S应助cometx采纳,获得10
12秒前
上官盼旋发布了新的文献求助10
13秒前
bingqian_yao发布了新的文献求助10
14秒前
16秒前
鱼鱼鱼完成签到 ,获得积分10
16秒前
16秒前
17秒前
18秒前
科研通AI5应助豆豆采纳,获得10
19秒前
weinaonao发布了新的文献求助10
19秒前
星辰大海应助希金斯采纳,获得10
21秒前
Timeline发布了新的文献求助10
21秒前
aa发布了新的文献求助10
22秒前
123完成签到,获得积分10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728134
求助须知:如何正确求助?哪些是违规求助? 3273299
关于积分的说明 9980758
捐赠科研通 2988689
什么是DOI,文献DOI怎么找? 1639727
邀请新用户注册赠送积分活动 778966
科研通“疑难数据库(出版商)”最低求助积分说明 747838