CRBSP:Prediction of CircRNA-RBP Binding Sites Based on Multimodal Intermediate Fusion

计算机科学 人工智能 计算生物学 核糖核酸 模式识别(心理学) 生物 遗传学 基因
作者
Niannian Liu,Zequn Zhang,Yanan Wu,Yinglong Wang,Ying Liang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 2898-2906 被引量:11
标识
DOI:10.1109/tcbb.2023.3272400
摘要

Circular RNA (CircRNA) is widely expressed and has physiological and pathological significance, regulating post-transcriptional processes via its protein-binding activity. However, whereas much work has been done on linear RNA and RNA binding protein (RBP), little is known about the binding sites of CircRNA. The current report is on the development of a medium-term multimodal data fusion strategy, CRBSP, to predict CircRNA-RBP binding sites. CRBSP represents the CircRNA trinucleotide semantic, location, composition and frequency information as the corresponding coding methods of Word to vector (Word2vec), Position-specific trinucleotide propensity (PSTNP), Pseudo trinucleotide composition (PseTNC) and Trinucleotide nucleotide composition (TNC), respectively. CNN (Convolution Neural Networks) was used to extract global information and BiLSTM (bidirectional Long- and Short-Term Memory network) encoder and LSTM (Long- and Short-Term Memory network) decoder for local sequence information. Enhancement of the contributions of key features by the self-attention mechanism was followed by mid-term fusion of the four enhanced features. Logistic Regression (LR) classifier showed that CRBSP gives a mean AUC value of 0.9362 through 5-fold Cross Validation of all 37 datasets, a performance which is superior to five current state-of-the-art models. Similar evaluation of linear RNA-RBP binding sites gave an AUC value of 0.7615 which is also higher than other prediction methods, demonstrating the robustness of CRBSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助yhhhhh采纳,获得10
1秒前
JamesPei应助kasumin采纳,获得10
1秒前
2秒前
归尘发布了新的文献求助10
2秒前
现代的天与完成签到 ,获得积分20
2秒前
晨昏蒙影完成签到 ,获得积分10
2秒前
科研大王关注了科研通微信公众号
3秒前
buyuan完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
周国煌发布了新的文献求助10
3秒前
高源伯发布了新的文献求助10
3秒前
superhanlei发布了新的文献求助10
3秒前
3秒前
传奇3应助沉静的樱桃采纳,获得80
4秒前
4秒前
4秒前
科研通AI6.1应助萌萌采纳,获得10
5秒前
我我我完成签到,获得积分10
5秒前
王晨完成签到,获得积分10
5秒前
小蘑菇应助猪猪hero采纳,获得10
5秒前
烟花应助三木采纳,获得10
6秒前
小二郎应助zyzy1996采纳,获得30
6秒前
汉堡发布了新的文献求助10
6秒前
我是老大应助Echo采纳,获得30
6秒前
天天开心完成签到,获得积分10
8秒前
8秒前
SUNLE发布了新的文献求助10
8秒前
superhanlei完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
乐乐应助befond采纳,获得10
9秒前
AHR发布了新的文献求助10
10秒前
11秒前
所所应助包容蛋挞采纳,获得10
11秒前
11秒前
12秒前
善学以致用应助myuniv采纳,获得10
12秒前
爆米花应助LL采纳,获得10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775976
求助须知:如何正确求助?哪些是违规求助? 5627280
关于积分的说明 15440657
捐赠科研通 4908271
什么是DOI,文献DOI怎么找? 2641135
邀请新用户注册赠送积分活动 1588932
关于科研通互助平台的介绍 1543784