CRBSP:Prediction of CircRNA-RBP Binding Sites Based on Multimodal Intermediate Fusion

计算机科学 人工智能 计算生物学 核糖核酸 模式识别(心理学) 生物 遗传学 基因
作者
Niannian Liu,Zequn Zhang,Yanan Wu,Yinglong Wang,Ying Liang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 2898-2906 被引量:1
标识
DOI:10.1109/tcbb.2023.3272400
摘要

Circular RNA (CircRNA) is widely expressed and has physiological and pathological significance, regulating post-transcriptional processes via its protein-binding activity. However, whereas much work has been done on linear RNA and RNA binding protein (RBP), little is known about the binding sites of CircRNA. The current report is on the development of a medium-term multimodal data fusion strategy, CRBSP, to predict CircRNA-RBP binding sites. CRBSP represents the CircRNA trinucleotide semantic, location, composition and frequency information as the corresponding coding methods of Word to vector (Word2vec), Position-specific trinucleotide propensity (PSTNP), Pseudo trinucleotide composition (PseTNC) and Trinucleotide nucleotide composition (TNC), respectively. CNN (Convolution Neural Networks) was used to extract global information and BiLSTM (bidirectional Long- and Short-Term Memory network) encoder and LSTM (Long- and Short-Term Memory network) decoder for local sequence information. Enhancement of the contributions of key features by the self-attention mechanism was followed by mid-term fusion of the four enhanced features. Logistic Regression (LR) classifier showed that CRBSP gives a mean AUC value of 0.9362 through 5-fold Cross Validation of all 37 datasets, a performance which is superior to five current state-of-the-art models. Similar evaluation of linear RNA-RBP binding sites gave an AUC value of 0.7615 which is also higher than other prediction methods, demonstrating the robustness of CRBSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ikun完成签到 ,获得积分10
刚刚
悦悦呀完成签到 ,获得积分10
1秒前
困困咪完成签到,获得积分10
3秒前
甜甜刚完成签到,获得积分10
3秒前
jake完成签到,获得积分10
4秒前
我我我完成签到,获得积分10
6秒前
酪酪Alona完成签到,获得积分10
7秒前
顾末完成签到,获得积分10
7秒前
xiaoluuu完成签到 ,获得积分10
7秒前
那时年少完成签到,获得积分10
11秒前
一一完成签到,获得积分10
11秒前
奶油蜜豆卷完成签到,获得积分10
12秒前
翔翔超人完成签到,获得积分20
13秒前
jiang发布了新的文献求助10
14秒前
Emily完成签到,获得积分10
14秒前
虚拟的尔蓝完成签到 ,获得积分10
15秒前
加减乘除完成签到,获得积分10
16秒前
甜甜玫瑰应助翔翔超人采纳,获得10
19秒前
Agnesma完成签到,获得积分10
20秒前
ytong完成签到,获得积分10
20秒前
skyinner完成签到 ,获得积分10
21秒前
姜峰完成签到,获得积分10
22秒前
123应助耍酷的梦桃采纳,获得200
23秒前
xiaofeng5838完成签到,获得积分10
23秒前
xyzdmmm完成签到,获得积分10
26秒前
我爱科研完成签到 ,获得积分10
27秒前
Leo完成签到 ,获得积分10
28秒前
Bioflying完成签到,获得积分10
29秒前
SONGYEZI应助无情向薇采纳,获得30
31秒前
知性的水杯完成签到 ,获得积分10
31秒前
蓝桉完成签到 ,获得积分10
31秒前
huy完成签到,获得积分10
31秒前
耍酷的梦桃完成签到,获得积分10
32秒前
落后访风完成签到,获得积分10
33秒前
明天过后完成签到,获得积分10
33秒前
kevinjiang完成签到,获得积分10
33秒前
白茶的雪完成签到,获得积分10
34秒前
研友_Lpawrn完成签到,获得积分10
35秒前
Leo关注了科研通微信公众号
35秒前
小脸红扑扑完成签到 ,获得积分10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294718
求助须知:如何正确求助?哪些是违规求助? 2930587
关于积分的说明 8446440
捐赠科研通 2602902
什么是DOI,文献DOI怎么找? 1420777
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643475