亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generative adversarial network-based sinogram super-resolution for computed tomography imaging

人工智能 计算机科学 迭代重建 投影(关系代数) 图像质量 鉴别器 发电机(电路理论) 计算机视觉 模式识别(心理学) 图像(数学) 算法 物理 探测器 电信 功率(物理) 量子力学
作者
Chao Tang,Wenkun Zhang,Linyuan Wang,Ailong Cai,Ningning Liang,Lei Li,Bin Yan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (23): 235006-235006 被引量:17
标识
DOI:10.1088/1361-6560/abc12f
摘要

Compared with the conventional 1×1 acquisition mode of projection in computed tomography (CT) image reconstruction, the 2×2 acquisition mode improves the collection efficiency of the projection and reduces the x-ray exposure time. However, the collected projection based on the 2×2 acquisition mode has low resolution (LR) and the reconstructed image quality is poor, thus limiting the use of this mode in CT imaging systems. In this study, a novel sinogram-super-resolution (SR) generative adversarial network model is proposed to obtain high-resolution (HR) sinograms from LR sinograms, thereby improving the reconstruction image quality under the 2×2 acquisition mode. The proposed generator is based on the residual network for LR sinogram feature extraction and SR sinogram generation. A relativistic discriminator is designed to render the network capable of obtaining more realistic SR sinograms. Moreover, we combine the cycle consistency loss, sinogram domain loss, and reconstruction image domain loss in the total loss function to supervise SR sinogram generation. Then, a trained model can be obtained by inputting the paired LR/HR sinograms into the network. Finally, the classic filtered-back-projection reconstruction algorithm is used for CT image reconstruction based on the generated SR sinogram. The qualitative and quantitative results of evaluations on digital and real data illustrate that the proposed model not only obtains clean SR sinograms from noisy LR sinograms but also outperforms its counterparts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
7秒前
7秒前
9秒前
NexusExplorer应助Emma采纳,获得10
10秒前
曾经凌萱发布了新的文献求助10
11秒前
我要看文献完成签到 ,获得积分10
12秒前
13秒前
14秒前
槐序深巷完成签到 ,获得积分10
14秒前
小宋爱科研完成签到 ,获得积分10
16秒前
17秒前
浮游应助Emma采纳,获得10
26秒前
xin发布了新的文献求助20
27秒前
31秒前
36秒前
36秒前
Moo5_zzZ发布了新的文献求助30
40秒前
42秒前
元气小Liu完成签到,获得积分20
45秒前
我是谁发布了新的文献求助10
45秒前
46秒前
倩倩子发布了新的文献求助10
47秒前
49秒前
51秒前
51秒前
烟花应助Moo5_zzZ采纳,获得30
54秒前
57秒前
57秒前
浦肯野发布了新的文献求助10
57秒前
邢晓彤完成签到 ,获得积分10
59秒前
共享精神应助fourcewill采纳,获得10
1分钟前
桃李春风一杯酒完成签到,获得积分10
1分钟前
香蕉觅云应助我是谁采纳,获得10
1分钟前
花壳在逃野猪完成签到,获得积分10
1分钟前
浦肯野完成签到,获得积分10
1分钟前
kd1412完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543029
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610941
捐赠科研通 4570445
什么是DOI,文献DOI怎么找? 2505771
邀请新用户注册赠送积分活动 1483063
关于科研通互助平台的介绍 1454364