Generative adversarial network-based sinogram super-resolution for computed tomography imaging

人工智能 计算机科学 迭代重建 投影(关系代数) 图像质量 鉴别器 发电机(电路理论) 计算机视觉 模式识别(心理学) 图像(数学) 算法 物理 探测器 电信 功率(物理) 量子力学
作者
Chao Tang,Wenkun Zhang,Linyuan Wang,Ailong Cai,Ningning Liang,Lei Li,Bin Yan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (23): 235006-235006 被引量:17
标识
DOI:10.1088/1361-6560/abc12f
摘要

Compared with the conventional 1×1 acquisition mode of projection in computed tomography (CT) image reconstruction, the 2×2 acquisition mode improves the collection efficiency of the projection and reduces the x-ray exposure time. However, the collected projection based on the 2×2 acquisition mode has low resolution (LR) and the reconstructed image quality is poor, thus limiting the use of this mode in CT imaging systems. In this study, a novel sinogram-super-resolution (SR) generative adversarial network model is proposed to obtain high-resolution (HR) sinograms from LR sinograms, thereby improving the reconstruction image quality under the 2×2 acquisition mode. The proposed generator is based on the residual network for LR sinogram feature extraction and SR sinogram generation. A relativistic discriminator is designed to render the network capable of obtaining more realistic SR sinograms. Moreover, we combine the cycle consistency loss, sinogram domain loss, and reconstruction image domain loss in the total loss function to supervise SR sinogram generation. Then, a trained model can be obtained by inputting the paired LR/HR sinograms into the network. Finally, the classic filtered-back-projection reconstruction algorithm is used for CT image reconstruction based on the generated SR sinogram. The qualitative and quantitative results of evaluations on digital and real data illustrate that the proposed model not only obtains clean SR sinograms from noisy LR sinograms but also outperforms its counterparts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助alex采纳,获得10
1秒前
李健的小迷弟应助炎燚采纳,获得10
2秒前
闪闪的雨柏完成签到,获得积分10
3秒前
科研通AI6应助shengsheng采纳,获得10
4秒前
4秒前
科研通AI2S应助weixin112233采纳,获得10
4秒前
酷波er应助May采纳,获得10
4秒前
5秒前
5秒前
爱吃米线发布了新的文献求助10
5秒前
郑浩龙完成签到,获得积分10
5秒前
5秒前
Jane_Xin发布了新的文献求助10
6秒前
79完成签到,获得积分10
7秒前
ll完成签到,获得积分10
7秒前
7秒前
小卡拉米应助黎明采纳,获得10
7秒前
XiaoYuuu完成签到,获得积分10
7秒前
FashionBoy应助喂喂喂采纳,获得10
8秒前
Lei完成签到,获得积分10
8秒前
饭米粒发布了新的文献求助10
11秒前
11秒前
魔音甜菜完成签到,获得积分10
11秒前
ankang完成签到,获得积分10
11秒前
11秒前
12秒前
度帕明完成签到,获得积分10
13秒前
Jasper应助粗心的无剑采纳,获得10
13秒前
FashionBoy应助甜蜜的松思采纳,获得10
13秒前
14秒前
迅速的谷菱关注了科研通微信公众号
14秒前
14秒前
ankang发布了新的文献求助10
15秒前
15秒前
liliping发布了新的文献求助10
15秒前
加百莉完成签到,获得积分10
16秒前
lxp完成签到,获得积分10
16秒前
Song完成签到,获得积分10
16秒前
Apei发布了新的文献求助10
17秒前
喵咪西西完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524