Generative adversarial network-based sinogram super-resolution for computed tomography imaging

人工智能 计算机科学 迭代重建 投影(关系代数) 图像质量 鉴别器 发电机(电路理论) 计算机视觉 模式识别(心理学) 图像(数学) 算法 物理 探测器 电信 功率(物理) 量子力学
作者
Chao Tang,Wenkun Zhang,Linyuan Wang,Ailong Cai,Ningning Liang,Lei Li,Bin Yan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (23): 235006-235006 被引量:17
标识
DOI:10.1088/1361-6560/abc12f
摘要

Compared with the conventional 1×1 acquisition mode of projection in computed tomography (CT) image reconstruction, the 2×2 acquisition mode improves the collection efficiency of the projection and reduces the x-ray exposure time. However, the collected projection based on the 2×2 acquisition mode has low resolution (LR) and the reconstructed image quality is poor, thus limiting the use of this mode in CT imaging systems. In this study, a novel sinogram-super-resolution (SR) generative adversarial network model is proposed to obtain high-resolution (HR) sinograms from LR sinograms, thereby improving the reconstruction image quality under the 2×2 acquisition mode. The proposed generator is based on the residual network for LR sinogram feature extraction and SR sinogram generation. A relativistic discriminator is designed to render the network capable of obtaining more realistic SR sinograms. Moreover, we combine the cycle consistency loss, sinogram domain loss, and reconstruction image domain loss in the total loss function to supervise SR sinogram generation. Then, a trained model can be obtained by inputting the paired LR/HR sinograms into the network. Finally, the classic filtered-back-projection reconstruction algorithm is used for CT image reconstruction based on the generated SR sinogram. The qualitative and quantitative results of evaluations on digital and real data illustrate that the proposed model not only obtains clean SR sinograms from noisy LR sinograms but also outperforms its counterparts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦呐完成签到,获得积分10
刚刚
开心幻巧完成签到,获得积分10
刚刚
ww完成签到 ,获得积分10
1秒前
1秒前
JHL发布了新的文献求助10
1秒前
xr完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
5秒前
orixero应助jaderuan采纳,获得10
5秒前
bkagyin应助学学学采纳,获得10
5秒前
cC应助童童采纳,获得10
5秒前
核桃发布了新的文献求助50
6秒前
7秒前
7秒前
科研通AI6应助靓丽的寒蕾采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
啦啦啦完成签到,获得积分10
10秒前
真真完成签到,获得积分20
10秒前
10秒前
张志超发布了新的文献求助10
11秒前
嘿嘿发布了新的文献求助10
11秒前
超帅悟空发布了新的文献求助10
11秒前
大机灵发布了新的文献求助10
11秒前
QI完成签到 ,获得积分10
12秒前
hao发布了新的文献求助10
12秒前
YuChen169完成签到 ,获得积分10
13秒前
真真发布了新的文献求助30
13秒前
13秒前
ghhu完成签到,获得积分10
14秒前
笨笨山芙完成签到 ,获得积分10
14秒前
15秒前
胡萝卜完成签到 ,获得积分10
15秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618419
求助须知:如何正确求助?哪些是违规求助? 4703323
关于积分的说明 14922057
捐赠科研通 4757439
什么是DOI,文献DOI怎么找? 2550076
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299