Inferring Potential CircRNA–Disease Associations via Deep Autoencoder-Based Classification

随机森林 分类器(UML) 自编码 模式识别(心理学) 机器学习 计算生物学 人工智能 计算机科学 生物信息学 深度学习 生物
作者
K. Deepthi,A. S. Jereesh
出处
期刊:Molecular Diagnosis & Therapy [Springer Nature]
卷期号:25 (1): 87-97 被引量:42
标识
DOI:10.1007/s40291-020-00499-y
摘要

Circular RNAs (circRNA) are endogenous non-coding RNA molecules with a stable circular conformation. Growing evidence from recent experiments reveals that dysregulations and abnormal expressions of circRNAs are correlated with complex diseases. Therefore, identifying the causal circRNAs behind diseases is invaluable in explaining the disease pathogenesis. Since biological experiments are difficult, slow-progressing, and prohibitively expensive, computational approaches are necessary for identifying the relationships between circRNAs and diseases. We propose an ensemble method called AE-RF, based on a deep autoencoder and random forest classifier, to predict potential circRNA–disease associations. The method first integrates circRNA and disease similarities to construct features. The integrated features are sent to the deep autoencoder, to extract hidden biological patterns. With the extracted deep features, the random forest classifier is trained for association prediction. AE-RF achieved AUC scores of 0.9486 and 0.9522, in fivefold and tenfold cross-validation experiments, respectively. We conducted case studies on the top-most predicted results and three common human cancers. We compared the method with state-of-the-art classifiers and related methods. The experimental results and case studies demonstrate the prediction power of the model, and it outperforms previous methods with high degree of robustness. Training the classifier with the unique features retrieved by the autoencoder enhanced the model’s predictive performance. The top predicted circRNAs are promising candidates for further biological tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
QW完成签到,获得积分10
1秒前
爱大美发布了新的文献求助10
2秒前
研友_LOoomL发布了新的文献求助10
2秒前
任鲂发布了新的文献求助10
3秒前
nicola发布了新的文献求助10
3秒前
狂奔的翔完成签到 ,获得积分10
4秒前
丘比特应助糖醋花孙米采纳,获得10
4秒前
思源应助开朗又菱采纳,获得10
4秒前
QW发布了新的文献求助10
5秒前
KK完成签到,获得积分10
5秒前
6秒前
6秒前
8秒前
JamesPei应助风趣冰棍采纳,获得10
9秒前
9秒前
小二点完成签到,获得积分0
9秒前
yiyi完成签到,获得积分10
9秒前
聪明小于完成签到 ,获得积分10
10秒前
八十六完成签到,获得积分10
10秒前
11秒前
林伯格发布了新的文献求助10
11秒前
Aurora发布了新的文献求助10
12秒前
斯文败类应助我爱学习采纳,获得10
12秒前
李健应助Wxl采纳,获得10
13秒前
北雁发布了新的文献求助10
13秒前
zzz完成签到 ,获得积分10
13秒前
佳loong发布了新的文献求助30
14秒前
Sylvia完成签到,获得积分10
15秒前
吴彦祖完成签到,获得积分10
16秒前
科目三应助vcuni采纳,获得10
17秒前
18秒前
糖醋花孙米完成签到,获得积分10
18秒前
18秒前
18秒前
corazon完成签到,获得积分10
19秒前
19秒前
bobo完成签到,获得积分10
22秒前
22秒前
爱大美完成签到,获得积分10
22秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129605
求助须知:如何正确求助?哪些是违规求助? 2780380
关于积分的说明 7747647
捐赠科研通 2435666
什么是DOI,文献DOI怎么找? 1294216
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570