Investigation of the importance of different factors of flood inundation modeling applied in urbanized area with variance-based global sensitivity analysis

大洪水 灵敏度(控制系统) 环境科学 差异(会计) 仿真建模 水文学(农业) 计算机科学 地理 数学 地质学 工程类 岩土工程 会计 考古 数理经济学 业务 电子工程
作者
Yun Xing,Dong Shao,Xieyao Ma,Shuaishuai Zhang,Gang Jiang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:772: 145327-145327 被引量:27
标识
DOI:10.1016/j.scitotenv.2021.145327
摘要

Flood modeling provides useful information to support flood risk assessment and management and reduce flood impacts in urbanized area. The accuracy of urban flood simulation results is highly dependent on the quality of input data for which the appropriate values are generally difficult to determine for complex urbanized environment and from which various uncertainties are induced into the modeling procedure. In this study, variance-based global sensitivity analysis is applied for the hydrodynamic modeling of urban flood to explore the relative importance of the factors of interest as model inputs and their contributions to the final results of the numerical model for different outputs. The factors include the spatial resolution, the forcing condition and the characteristics of the underlying urbanized surface. The global sensitivity analysis results are examined in both spatially lumped and distributed perspective. Findings indicate that importance of the input factors varies with regard to different model output and the influence of the spatial resolution is more tightly related to the flood flow movements whereas that of the rainfall inputs is more relevant to the flood water volume. Spatial variability in the influence of the input factors is revealed to be hidden by the spatially lumped results and the importance of the factors describing the underlying urban surface is found to be largely dependent on the location of the analyzed model output associated with the land-use type. Improved understanding of sensitivity of hydrodynamic modeling of urban floods may help the modelers to decide which input factors to prioritize on according to which model outputs are assessed and where they are assessed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
000发布了新的文献求助10
刚刚
噔噔噔噔完成签到,获得积分10
1秒前
2秒前
刘怀蕊发布了新的文献求助10
3秒前
舒心赛凤发布了新的文献求助10
3秒前
文艺明杰完成签到,获得积分10
3秒前
4秒前
4秒前
wawuuuuu完成签到,获得积分10
4秒前
Akim应助谢家宝树采纳,获得10
4秒前
LU发布了新的文献求助10
4秒前
5秒前
pinging完成签到,获得积分10
5秒前
通~发布了新的文献求助10
6秒前
lai完成签到,获得积分20
6秒前
6秒前
7秒前
7秒前
隐形曼青应助彭彭采纳,获得10
8秒前
卡卡完成签到 ,获得积分10
8秒前
科目三应助季夏采纳,获得10
9秒前
9秒前
今后应助激动的一手采纳,获得10
9秒前
许中原完成签到,获得积分10
9秒前
无限的幻灵完成签到,获得积分10
9秒前
10秒前
整齐路灯完成签到,获得积分10
10秒前
紧张的梦岚应助跳跃乘风采纳,获得20
10秒前
简单水杯完成签到 ,获得积分10
10秒前
大胆的尔岚完成签到,获得积分10
11秒前
11秒前
Sene完成签到,获得积分10
11秒前
哈哈大笑发布了新的文献求助10
11秒前
叶飞荷发布了新的文献求助10
12秒前
12秒前
竹筏过海应助嘎啦嘎嘎啦采纳,获得40
12秒前
12秒前
123456完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762