A systematic review of prediction models for the experience of urban soundscapes

声景 计算机科学 背景(考古学) 宁静 舒适 线性模型 预测建模 机器学习 数据挖掘 人工智能 地理 认知心理学 心理学 考古 法学 声音(地理) 地质学 地貌学 政治学
作者
Matteo Lionello,Francesco Aletta,Jian Kang
出处
期刊:Applied Acoustics [Elsevier]
卷期号:170: 107479-107479 被引量:68
标识
DOI:10.1016/j.apacoust.2020.107479
摘要

A systematic review for soundscape modelling methods is presented. The methods for developing soundscape models are hereby questioned by investigating the following aspects: data acquisition methods, indicators used as predictors of descriptors in the models, descriptors targeted as output of the models, linear rather than non-linear model fitting, and overall performances. The inclusion criteria for the reviewed studies were: models dealing with soundscape dimensions aligned with the definitions provided in the ISO 12913 series; models based on soundscape data sampled at least at two different locations and using at least two variables as indicators. The Scopus database was queried. Biases on papers selection were considered and those related to the methods are discussed in the current study. Out of 256 results from Scopus, 22 studies were selected. Two studies were included from the references among the results. The data extraction from the 24 studies includes: data collection methods, input and output for the models, and model performance. Three main data collection methods were found. Several studies focus on the different combination of indicators among physical measurements, perceptual evaluations, temporal dynamics, demographic and psychological information, context information and visual amenity. The descriptors considered across the studies include: acoustic comfort, valence, arousal, calmness, chaoticness, sound quality, tranquillity, and vibrancy. The interpretation of the results is limited by the large variety of methods, and the large number of parameters in spite of a limited amount of studies obtained from the query. However, perceptual indicators, visual and contextual indicators, as well as time dynamic embedding, overall provide a better prediction of soundscape. Finally, although the compared performance between linear and non-linear methods does not show remarkable differences, non-linear methods might still represent a more suitable choice in models where complex structures of indicators are used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yuanxiao完成签到,获得积分10
5秒前
123木头人完成签到,获得积分10
6秒前
传奇3应助陈小鱼干采纳,获得10
8秒前
科研修沟发布了新的文献求助10
9秒前
哈哈哈哈完成签到 ,获得积分10
13秒前
15秒前
烟花应助完美的凝蝶采纳,获得10
16秒前
xliiii完成签到,获得积分10
17秒前
天天快乐应助嘉嘉采纳,获得10
17秒前
17秒前
斯文败类应助tingting采纳,获得10
18秒前
TANG完成签到 ,获得积分10
19秒前
迅速的丑发布了新的文献求助10
20秒前
wangy完成签到 ,获得积分10
21秒前
CH发布了新的文献求助10
23秒前
24秒前
24秒前
duoduo完成签到,获得积分10
25秒前
今后应助迅速的丑采纳,获得10
25秒前
SciGPT应助Yzzz采纳,获得10
27秒前
肉肉完成签到 ,获得积分10
29秒前
29秒前
科目三应助chant采纳,获得10
30秒前
tingting发布了新的文献求助10
30秒前
arcremnant完成签到,获得积分10
31秒前
星河鱼关注了科研通微信公众号
32秒前
清脆代桃完成签到 ,获得积分10
34秒前
lulalula完成签到,获得积分10
34秒前
xx完成签到 ,获得积分20
38秒前
华hgger完成签到,获得积分10
39秒前
科研通AI2S应助相龙采纳,获得10
39秒前
我是老大应助Frisk12sfs采纳,获得10
40秒前
zane发布了新的文献求助10
41秒前
李爱国应助里海怪物采纳,获得10
42秒前
华hgger发布了新的文献求助10
43秒前
45秒前
牛牛发布了新的文献求助10
45秒前
后会无期完成签到,获得积分10
47秒前
上官若男应助科研通管家采纳,获得10
48秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791116
关于积分的说明 7798129
捐赠科研通 2447583
什么是DOI,文献DOI怎么找? 1301980
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194