A systematic review of prediction models for the experience of urban soundscapes

声景 计算机科学 背景(考古学) 宁静 舒适 线性模型 预测建模 机器学习 数据挖掘 人工智能 地理 认知心理学 心理学 考古 法学 声音(地理) 地质学 地貌学 政治学
作者
Matteo Lionello,Francesco Aletta,Jian Kang
出处
期刊:Applied Acoustics [Elsevier]
卷期号:170: 107479-107479 被引量:68
标识
DOI:10.1016/j.apacoust.2020.107479
摘要

A systematic review for soundscape modelling methods is presented. The methods for developing soundscape models are hereby questioned by investigating the following aspects: data acquisition methods, indicators used as predictors of descriptors in the models, descriptors targeted as output of the models, linear rather than non-linear model fitting, and overall performances. The inclusion criteria for the reviewed studies were: models dealing with soundscape dimensions aligned with the definitions provided in the ISO 12913 series; models based on soundscape data sampled at least at two different locations and using at least two variables as indicators. The Scopus database was queried. Biases on papers selection were considered and those related to the methods are discussed in the current study. Out of 256 results from Scopus, 22 studies were selected. Two studies were included from the references among the results. The data extraction from the 24 studies includes: data collection methods, input and output for the models, and model performance. Three main data collection methods were found. Several studies focus on the different combination of indicators among physical measurements, perceptual evaluations, temporal dynamics, demographic and psychological information, context information and visual amenity. The descriptors considered across the studies include: acoustic comfort, valence, arousal, calmness, chaoticness, sound quality, tranquillity, and vibrancy. The interpretation of the results is limited by the large variety of methods, and the large number of parameters in spite of a limited amount of studies obtained from the query. However, perceptual indicators, visual and contextual indicators, as well as time dynamic embedding, overall provide a better prediction of soundscape. Finally, although the compared performance between linear and non-linear methods does not show remarkable differences, non-linear methods might still represent a more suitable choice in models where complex structures of indicators are used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助csq采纳,获得10
刚刚
dafwfwaf发布了新的文献求助10
刚刚
刚刚
景别完成签到,获得积分10
1秒前
彭于晏应助zhappy采纳,获得20
1秒前
2秒前
xg发布了新的文献求助10
2秒前
3秒前
Tophet完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
FashionBoy应助落落采纳,获得10
5秒前
活力的青枫完成签到 ,获得积分10
5秒前
苏素肃发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
空禅yew发布了新的文献求助10
7秒前
汉堡包应助花开的声音1217采纳,获得10
7秒前
ying发布了新的文献求助10
7秒前
animenz完成签到,获得积分10
8秒前
tY发布了新的文献求助10
9秒前
OJL发布了新的文献求助10
9秒前
9秒前
9秒前
柒柒完成签到,获得积分10
9秒前
丘比特应助111采纳,获得10
10秒前
11秒前
11秒前
XShu完成签到,获得积分20
11秒前
xx完成签到 ,获得积分10
12秒前
羊知鱼完成签到,获得积分10
13秒前
公茂源发布了新的文献求助30
13秒前
搞怪不言发布了新的文献求助10
14秒前
DDDD完成签到,获得积分10
14秒前
陈莹发布了新的文献求助10
14秒前
执着的幻柏完成签到,获得积分10
14秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808