A systematic review of prediction models for the experience of urban soundscapes

声景 计算机科学 背景(考古学) 宁静 舒适 线性模型 预测建模 机器学习 数据挖掘 人工智能 地理 认知心理学 心理学 声音(地理) 考古 地貌学 政治学 法学 地质学
作者
Matteo Lionello,Francesco Aletta,Jian Kang
出处
期刊:Applied Acoustics [Elsevier BV]
卷期号:170: 107479-107479 被引量:68
标识
DOI:10.1016/j.apacoust.2020.107479
摘要

A systematic review for soundscape modelling methods is presented. The methods for developing soundscape models are hereby questioned by investigating the following aspects: data acquisition methods, indicators used as predictors of descriptors in the models, descriptors targeted as output of the models, linear rather than non-linear model fitting, and overall performances. The inclusion criteria for the reviewed studies were: models dealing with soundscape dimensions aligned with the definitions provided in the ISO 12913 series; models based on soundscape data sampled at least at two different locations and using at least two variables as indicators. The Scopus database was queried. Biases on papers selection were considered and those related to the methods are discussed in the current study. Out of 256 results from Scopus, 22 studies were selected. Two studies were included from the references among the results. The data extraction from the 24 studies includes: data collection methods, input and output for the models, and model performance. Three main data collection methods were found. Several studies focus on the different combination of indicators among physical measurements, perceptual evaluations, temporal dynamics, demographic and psychological information, context information and visual amenity. The descriptors considered across the studies include: acoustic comfort, valence, arousal, calmness, chaoticness, sound quality, tranquillity, and vibrancy. The interpretation of the results is limited by the large variety of methods, and the large number of parameters in spite of a limited amount of studies obtained from the query. However, perceptual indicators, visual and contextual indicators, as well as time dynamic embedding, overall provide a better prediction of soundscape. Finally, although the compared performance between linear and non-linear methods does not show remarkable differences, non-linear methods might still represent a more suitable choice in models where complex structures of indicators are used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高海龙发布了新的文献求助10
1秒前
2秒前
汉堡包应助xiaochuan采纳,获得10
3秒前
ZhuYJ发布了新的文献求助10
4秒前
4秒前
脑洞疼应助勾勾1991采纳,获得10
5秒前
lkx完成签到,获得积分10
5秒前
kamul发布了新的文献求助30
5秒前
SciGPT应助香蕉靖雁采纳,获得10
5秒前
绝不拖延完成签到,获得积分10
5秒前
6秒前
现代绮玉完成签到,获得积分10
7秒前
砍柴少年发布了新的文献求助10
7秒前
爆米花应助moreorless_zjh采纳,获得10
8秒前
YCQ发布了新的文献求助10
9秒前
AiX-zzzzz发布了新的文献求助10
9秒前
在水一方应助砍柴少年采纳,获得10
11秒前
完美世界应助WizBLue采纳,获得10
12秒前
kamul发布了新的文献求助10
12秒前
大模型应助方QL采纳,获得10
14秒前
慕青应助AiX-zzzzz采纳,获得10
15秒前
YCQ完成签到,获得积分10
15秒前
16秒前
梨理栗完成签到,获得积分10
17秒前
franca2005完成签到 ,获得积分10
17秒前
xiaochuan完成签到,获得积分10
19秒前
Jiangzhibing发布了新的文献求助10
22秒前
欢快的芹菜完成签到,获得积分10
22秒前
华仔应助科研通管家采纳,获得10
27秒前
未央应助科研通管家采纳,获得10
28秒前
爆米花应助科研通管家采纳,获得10
28秒前
李健的小迷弟应助XU采纳,获得10
29秒前
29秒前
30秒前
30秒前
30秒前
32秒前
Jiangzhibing发布了新的文献求助10
34秒前
刘英坤发布了新的文献求助10
35秒前
冷傲熊猫发布了新的文献求助30
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003