A systematic review of prediction models for the experience of urban soundscapes

声景 计算机科学 背景(考古学) 宁静 舒适 线性模型 预测建模 机器学习 数据挖掘 人工智能 地理 认知心理学 心理学 声音(地理) 考古 地貌学 政治学 法学 地质学
作者
Matteo Lionello,Francesco Aletta,Jian Kang
出处
期刊:Applied Acoustics [Elsevier]
卷期号:170: 107479-107479 被引量:68
标识
DOI:10.1016/j.apacoust.2020.107479
摘要

A systematic review for soundscape modelling methods is presented. The methods for developing soundscape models are hereby questioned by investigating the following aspects: data acquisition methods, indicators used as predictors of descriptors in the models, descriptors targeted as output of the models, linear rather than non-linear model fitting, and overall performances. The inclusion criteria for the reviewed studies were: models dealing with soundscape dimensions aligned with the definitions provided in the ISO 12913 series; models based on soundscape data sampled at least at two different locations and using at least two variables as indicators. The Scopus database was queried. Biases on papers selection were considered and those related to the methods are discussed in the current study. Out of 256 results from Scopus, 22 studies were selected. Two studies were included from the references among the results. The data extraction from the 24 studies includes: data collection methods, input and output for the models, and model performance. Three main data collection methods were found. Several studies focus on the different combination of indicators among physical measurements, perceptual evaluations, temporal dynamics, demographic and psychological information, context information and visual amenity. The descriptors considered across the studies include: acoustic comfort, valence, arousal, calmness, chaoticness, sound quality, tranquillity, and vibrancy. The interpretation of the results is limited by the large variety of methods, and the large number of parameters in spite of a limited amount of studies obtained from the query. However, perceptual indicators, visual and contextual indicators, as well as time dynamic embedding, overall provide a better prediction of soundscape. Finally, although the compared performance between linear and non-linear methods does not show remarkable differences, non-linear methods might still represent a more suitable choice in models where complex structures of indicators are used.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZCxiang完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
仁爱的晓刚完成签到,获得积分20
1秒前
隐形曼青应助蔺瑾瑜采纳,获得10
2秒前
元始天尊完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
超越星辰完成签到,获得积分10
3秒前
烟花应助土豪的初露采纳,获得10
4秒前
5秒前
敏感尔珍发布了新的文献求助10
5秒前
研友_VZG7GZ应助仁爱的晓刚采纳,获得10
7秒前
英俊的铭应助读书的时候采纳,获得10
7秒前
花h完成签到,获得积分10
7秒前
1056720198发布了新的文献求助10
7秒前
8秒前
都安完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
白羊发布了新的文献求助30
9秒前
今后应助111采纳,获得10
10秒前
10秒前
11秒前
迷人的媚颜完成签到,获得积分20
11秒前
11秒前
zjw完成签到 ,获得积分10
11秒前
13秒前
打打应助可靠豌豆采纳,获得10
13秒前
蔺瑾瑜发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
Lucas应助SICHEN采纳,获得10
15秒前
15秒前
可乐加冰完成签到,获得积分10
16秒前
解紫雪发布了新的文献求助10
17秒前
Precious发布了新的文献求助10
17秒前
3384955474完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735472
求助须知:如何正确求助?哪些是违规求助? 5360845
关于积分的说明 15330104
捐赠科研通 4879619
什么是DOI,文献DOI怎么找? 2622182
邀请新用户注册赠送积分活动 1571280
关于科研通互助平台的介绍 1528116