4-D Flight Trajectory Prediction With Constrained LSTM Network

弹道 计算机科学 空中交通管理 空中交通管制 数据挖掘 人工智能 工程类 天文 物理 航空航天工程
作者
Zhiyuan Shi,Min Xu,Quan Pan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (11): 7242-7255 被引量:31
标识
DOI:10.1109/tits.2020.3004807
摘要

The increasing aviation activities pose a challenge to ensure a safe and orderly flight. Trajectory prediction is one of the most important forecasting tasks in Air Traffic Management. Accurate prediction is reasonable for safe and orderly flight tasks in civil aviation monitoring. Points of interests play an important role in most land traffic prediction algorithms due to their abilities in positioning and marking. Compared with land traffic, the sparse way-points and shared airways make it difficult for flight trajectory prediction. A constrained Long Short-Term Memory network for flight trajectory prediction is proposed in this paper. According to the dynamic characteristics of the aircraft, we propose three kinds of constraints to climbing, cruising, and descending/approaching phases, in particular, they are Top of climb, Way-points, and Runway direction, correspondingly. Our model is able to keep long-term dependencies with dynamic physical constraints. Density-Based Spatial Clustering of Applications with Noise and Linear Least Squares are used in data segmentation and preprocessing. Sliding windows help maintain the continuity of trajectory. Four-dimensional spatial-temporal trajectory set consisting of spatial position and timestamps is used to prove the efficiency of our approach. Multiple ADS-B ground stations contribute to our experimental dataset. The widely used Long Short-Term Memory network, Markov Model, weighted Markov Model, Support Vector Machine, and Kalman Filter are used for comparison. Quantitative analysis demonstrates that our model outperforms the above-mentioned state-of-the-art models, and lays a good foundation for decision-making in different scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luyuhao3应助孤独衣采纳,获得10
刚刚
刚刚
刚刚
咕噜完成签到 ,获得积分10
1秒前
1秒前
俏皮元珊完成签到 ,获得积分10
1秒前
英年早胖的96完成签到,获得积分10
1秒前
俭朴新之完成签到 ,获得积分10
1秒前
慕斯完成签到,获得积分10
2秒前
WXK@945发布了新的文献求助10
3秒前
bkagyin应助lanlan采纳,获得10
3秒前
ichris完成签到,获得积分10
3秒前
哈哈哈完成签到,获得积分10
3秒前
稳重的白羊完成签到 ,获得积分20
4秒前
4秒前
4秒前
4秒前
Jasper应助13223456采纳,获得10
5秒前
领导范儿应助song采纳,获得10
5秒前
6秒前
Even9完成签到,获得积分10
6秒前
6秒前
kaede完成签到,获得积分10
7秒前
7秒前
qwe123完成签到,获得积分10
7秒前
香蕉觅云应助shineshine采纳,获得10
8秒前
8秒前
呆萌晓啸完成签到,获得积分10
8秒前
9秒前
9秒前
11秒前
一只滦发布了新的文献求助10
11秒前
红枫没有微雨怜完成签到 ,获得积分10
11秒前
12秒前
细心妙旋完成签到 ,获得积分10
12秒前
13秒前
bian完成签到 ,获得积分10
13秒前
giiiiiili发布了新的文献求助10
13秒前
shan完成签到,获得积分10
14秒前
电脑桌发布了新的文献求助10
14秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408487
求助须知:如何正确求助?哪些是违规求助? 3012625
关于积分的说明 8855058
捐赠科研通 2699846
什么是DOI,文献DOI怎么找? 1480188
科研通“疑难数据库(出版商)”最低求助积分说明 684209
邀请新用户注册赠送积分活动 678506