Human vs. supervised machine learning: Who learns patterns faster?

计算机科学 机器学习 人工智能 任务(项目管理) 认知 心理学 经济 神经科学 管理
作者
Niklas Kühl,Marc Goutier,Lucas Baier,Clemens Wolff,Dominik Martin
出处
期刊:Cognitive Systems Research [Elsevier]
卷期号:76: 78-92 被引量:18
标识
DOI:10.1016/j.cogsys.2022.09.002
摘要

The capabilities of supervised machine learning (SML), especially compared to human abilities, are being discussed in scientific research and in the usage of SML. This study provides an answer to how learning performance differs between humans and machines when there is limited training data. We have designed an experiment in which 44 humans and three different machine learning algorithms identify patterns in labeled training data and have to label instances according to the patterns they find. The results show a high dependency between performance and the underlying patterns of the task. Whereas humans perform relatively similarly across all patterns, machines show large performance differences for the various patterns in our experiment. After seeing 20 instances in the experiment, human performance does not improve anymore, which we relate to theories of cognitive overload. Machines learn slower but can reach the same level or may even outperform humans in 2 of the 4 of used patterns. However, machines need more instances compared to humans for the same results. The performance of machines is comparably lower for the other 2 patterns due to the difficulty of combining input features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康康关注了科研通微信公众号
刚刚
彭于晏应助爱学习的小霸采纳,获得10
1秒前
科研通AI2S应助霁星河采纳,获得10
1秒前
洋芋兔坨完成签到,获得积分10
1秒前
2秒前
8R60d8应助好梦采纳,获得10
2秒前
2秒前
。墨殇发布了新的文献求助10
2秒前
Junehe发布了新的文献求助10
4秒前
深情安青应助Mse采纳,获得10
5秒前
6秒前
善学以致用应助由哎采纳,获得10
6秒前
6秒前
7秒前
8秒前
8秒前
wanci应助cc采纳,获得10
11秒前
11秒前
12秒前
。墨殇完成签到,获得积分20
12秒前
13秒前
研友_LOK59L发布了新的文献求助10
13秒前
乔治发布了新的文献求助10
13秒前
splendore完成签到,获得积分10
13秒前
wjx发布了新的文献求助10
14秒前
bofu发布了新的文献求助10
14秒前
14秒前
康康发布了新的文献求助10
15秒前
科研通AI2S应助WYN采纳,获得10
17秒前
18秒前
18秒前
20秒前
打打应助简易采纳,获得10
20秒前
乔治完成签到,获得积分20
20秒前
keyanlv完成签到,获得积分10
22秒前
不会起名发布了新的文献求助30
24秒前
山真页完成签到,获得积分10
25秒前
Lindsey发布了新的文献求助10
25秒前
26秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309669
求助须知:如何正确求助?哪些是违规求助? 2942933
关于积分的说明 8511870
捐赠科研通 2618027
什么是DOI,文献DOI怎么找? 1430770
科研通“疑难数据库(出版商)”最低求助积分说明 664273
邀请新用户注册赠送积分活动 649451