Reliable Thyroid Carcinoma Detection with Real-Time Intelligent Analysis of Ultrasound Images

甲状腺结节 计算机科学 结核(地质) 人工智能 卷积神经网络 超声波 模式识别(心理学) 计算机视觉 放射科 甲状腺 医学 生物 内科学 古生物学
作者
Fang Han,Li Gong,Yuan Xu,Yiyao Zhuo,Wentao Kong,Chenglei Peng,Jie Yuan
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:47 (3): 590-602 被引量:11
标识
DOI:10.1016/j.ultrasmedbio.2020.11.024
摘要

Thyroid carcinoma is one of the most common endocrine diseases globally, and the incidence has been on the rise in recent years. Ultrasound imaging is the primary clinical method for early thyroid nodule diagnosis. Regions of interest (ROIs) of nodules in ultrasound images are difficult to detect because of their irregular shape nand vague margins. Accurate real-time thyroid nodule detection can provide ROIs for subsequent nodule diagnosis automatically, avoid variabilities between the subjective interpretations and inter-observer effectively and alleviate the workloads of medical practitioners. The aim of this study was to present a reliable, real-time detection method based on the Faster R-CNN (region-based convolutional network) framework for accurate and fast detection of thyroid nodules in ultrasound images. Our study proposed a faster and more accurate thyroid nodule detection method based on the Faster R-CNN framework by adding three strategies: feature pyramid, spatial remapping and anchor-box redesign. Specifically, the network takes raw ultrasound images as inputs and generates boxes with positions and the possibilities that these boxes contain thyroid nodules. The proposed method could locate and detect target nodules accurately with a mean average precision of 92.79% with more than 9000 patient images. In addition, the detection rate has accelerated to >16 frames per second, four times faster than that of the initial network. Therefore, it can meet the requirements of clinical application. The performance of the fivefold cross-validation was also accurate and robust. The proposed automatic thyroid nodule detection method yields better performance in accuracy and detection speed, which indicates the potential value of our method in assisting clinical ultrasound image interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小完成签到,获得积分10
1秒前
赘婿应助学时习采纳,获得10
2秒前
和谐秋完成签到,获得积分20
2秒前
张毅德发布了新的文献求助10
3秒前
小二郎应助小毛线采纳,获得10
3秒前
小机灵鬼发布了新的文献求助10
4秒前
yue完成签到,获得积分10
4秒前
Xia完成签到,获得积分10
5秒前
务实水池完成签到 ,获得积分10
5秒前
6秒前
6秒前
年轻元冬完成签到,获得积分10
7秒前
7秒前
xhnmdl发布了新的文献求助20
8秒前
dreek完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
汪汪发布了新的文献求助10
11秒前
体贴绮露完成签到,获得积分10
12秒前
李欣华完成签到,获得积分10
13秒前
13秒前
小毛线完成签到,获得积分10
13秒前
14秒前
14秒前
充电宝应助203采纳,获得10
16秒前
陆木子完成签到,获得积分10
16秒前
vermouth发布了新的文献求助10
16秒前
策略发布了新的文献求助10
16秒前
学时习发布了新的文献求助10
17秒前
王MY发布了新的文献求助10
18秒前
mouxq发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
Lucas应助小机灵鬼采纳,获得10
21秒前
胖虎的老张完成签到,获得积分10
21秒前
大个应助务实水池采纳,获得10
22秒前
科研通AI6应助yang采纳,获得10
23秒前
何ry发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050498
求助须知:如何正确求助?哪些是违规求助? 4278143
关于积分的说明 13335639
捐赠科研通 4093121
什么是DOI,文献DOI怎么找? 2240065
邀请新用户注册赠送积分活动 1246730
关于科研通互助平台的介绍 1175605