Reliable Thyroid Carcinoma Detection with Real-Time Intelligent Analysis of Ultrasound Images

甲状腺结节 计算机科学 结核(地质) 人工智能 卷积神经网络 超声波 模式识别(心理学) 计算机视觉 放射科 甲状腺 医学 古生物学 内科学 生物
作者
Fang Han,Li Gong,Yuan Xu,Yiyao Zhuo,Wentao Kong,Chenglei Peng,Jie Yuan
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:47 (3): 590-602 被引量:11
标识
DOI:10.1016/j.ultrasmedbio.2020.11.024
摘要

Thyroid carcinoma is one of the most common endocrine diseases globally, and the incidence has been on the rise in recent years. Ultrasound imaging is the primary clinical method for early thyroid nodule diagnosis. Regions of interest (ROIs) of nodules in ultrasound images are difficult to detect because of their irregular shape nand vague margins. Accurate real-time thyroid nodule detection can provide ROIs for subsequent nodule diagnosis automatically, avoid variabilities between the subjective interpretations and inter-observer effectively and alleviate the workloads of medical practitioners. The aim of this study was to present a reliable, real-time detection method based on the Faster R-CNN (region-based convolutional network) framework for accurate and fast detection of thyroid nodules in ultrasound images. Our study proposed a faster and more accurate thyroid nodule detection method based on the Faster R-CNN framework by adding three strategies: feature pyramid, spatial remapping and anchor-box redesign. Specifically, the network takes raw ultrasound images as inputs and generates boxes with positions and the possibilities that these boxes contain thyroid nodules. The proposed method could locate and detect target nodules accurately with a mean average precision of 92.79% with more than 9000 patient images. In addition, the detection rate has accelerated to >16 frames per second, four times faster than that of the initial network. Therefore, it can meet the requirements of clinical application. The performance of the fivefold cross-validation was also accurate and robust. The proposed automatic thyroid nodule detection method yields better performance in accuracy and detection speed, which indicates the potential value of our method in assisting clinical ultrasound image interpretation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993给Island D的求助进行了留言
1秒前
画凌烟发布了新的文献求助10
1秒前
丁丁发布了新的文献求助20
1秒前
顺利毕业完成签到,获得积分10
1秒前
斯文败类应助jjj采纳,获得30
1秒前
1秒前
1秒前
老妖完成签到,获得积分20
2秒前
不去的新完成签到,获得积分10
3秒前
脑洞疼应助sumu采纳,获得10
3秒前
Iridesent0v0发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
何哈哈发布了新的文献求助10
6秒前
zhangyida发布了新的文献求助10
6秒前
屋里彩虹完成签到,获得积分10
6秒前
慕青应助畅快大象采纳,获得10
7秒前
SHU发布了新的文献求助10
7秒前
奋斗长颈鹿完成签到,获得积分10
7秒前
7秒前
哟梦完成签到,获得积分10
7秒前
辞忧发布了新的文献求助10
7秒前
胡重威发布了新的文献求助10
8秒前
sunshine完成签到,获得积分20
8秒前
堡堡完成签到,获得积分10
8秒前
NEKO发布了新的文献求助30
9秒前
9秒前
kyf发布了新的文献求助20
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
屋里彩虹发布了新的文献求助10
10秒前
wangjia完成签到 ,获得积分10
10秒前
tianmeiling完成签到 ,获得积分10
11秒前
yiyi完成签到 ,获得积分10
11秒前
淡定绮波应助叶液采纳,获得10
11秒前
12秒前
12秒前
XIAOXIAOLI完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233