Reliable Thyroid Carcinoma Detection with Real-Time Intelligent Analysis of Ultrasound Images

甲状腺结节 计算机科学 结核(地质) 人工智能 卷积神经网络 超声波 模式识别(心理学) 计算机视觉 放射科 甲状腺 医学 古生物学 内科学 生物
作者
Fang Han,Li Gong,Yuan Xu,Yiyao Zhuo,Wentao Kong,Chenglei Peng,Jie Yuan
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:47 (3): 590-602 被引量:11
标识
DOI:10.1016/j.ultrasmedbio.2020.11.024
摘要

Thyroid carcinoma is one of the most common endocrine diseases globally, and the incidence has been on the rise in recent years. Ultrasound imaging is the primary clinical method for early thyroid nodule diagnosis. Regions of interest (ROIs) of nodules in ultrasound images are difficult to detect because of their irregular shape nand vague margins. Accurate real-time thyroid nodule detection can provide ROIs for subsequent nodule diagnosis automatically, avoid variabilities between the subjective interpretations and inter-observer effectively and alleviate the workloads of medical practitioners. The aim of this study was to present a reliable, real-time detection method based on the Faster R-CNN (region-based convolutional network) framework for accurate and fast detection of thyroid nodules in ultrasound images. Our study proposed a faster and more accurate thyroid nodule detection method based on the Faster R-CNN framework by adding three strategies: feature pyramid, spatial remapping and anchor-box redesign. Specifically, the network takes raw ultrasound images as inputs and generates boxes with positions and the possibilities that these boxes contain thyroid nodules. The proposed method could locate and detect target nodules accurately with a mean average precision of 92.79% with more than 9000 patient images. In addition, the detection rate has accelerated to >16 frames per second, four times faster than that of the initial network. Therefore, it can meet the requirements of clinical application. The performance of the fivefold cross-validation was also accurate and robust. The proposed automatic thyroid nodule detection method yields better performance in accuracy and detection speed, which indicates the potential value of our method in assisting clinical ultrasound image interpretation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助XIEQ采纳,获得10
2秒前
ding应助范良聪采纳,获得10
3秒前
宓广缘发布了新的文献求助10
4秒前
华仔应助无情的尔风采纳,获得30
4秒前
小二郎应助无情的尔风采纳,获得10
4秒前
6秒前
华仔应助sci大户采纳,获得10
6秒前
斯文败类应助ccc采纳,获得10
7秒前
Van完成签到,获得积分10
9秒前
古或今完成签到,获得积分10
9秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
niceLDD应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
10秒前
搜集达人应助科研通管家采纳,获得30
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
ccc发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
18秒前
Akim应助真不叫阿呆采纳,获得10
19秒前
Alice完成签到,获得积分20
20秒前
tier3完成签到,获得积分10
21秒前
南风发布了新的文献求助10
22秒前
度ewf发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
24秒前
科研通AI6应助cyy2339采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432