Reliable Thyroid Carcinoma Detection with Real-Time Intelligent Analysis of Ultrasound Images

甲状腺结节 计算机科学 结核(地质) 人工智能 卷积神经网络 超声波 模式识别(心理学) 计算机视觉 放射科 甲状腺 医学 古生物学 内科学 生物
作者
Fang Han,Li Gong,Yuan Xu,Yiyao Zhuo,Wentao Kong,Chenglei Peng,Jie Yuan
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:47 (3): 590-602 被引量:11
标识
DOI:10.1016/j.ultrasmedbio.2020.11.024
摘要

Thyroid carcinoma is one of the most common endocrine diseases globally, and the incidence has been on the rise in recent years. Ultrasound imaging is the primary clinical method for early thyroid nodule diagnosis. Regions of interest (ROIs) of nodules in ultrasound images are difficult to detect because of their irregular shape nand vague margins. Accurate real-time thyroid nodule detection can provide ROIs for subsequent nodule diagnosis automatically, avoid variabilities between the subjective interpretations and inter-observer effectively and alleviate the workloads of medical practitioners. The aim of this study was to present a reliable, real-time detection method based on the Faster R-CNN (region-based convolutional network) framework for accurate and fast detection of thyroid nodules in ultrasound images. Our study proposed a faster and more accurate thyroid nodule detection method based on the Faster R-CNN framework by adding three strategies: feature pyramid, spatial remapping and anchor-box redesign. Specifically, the network takes raw ultrasound images as inputs and generates boxes with positions and the possibilities that these boxes contain thyroid nodules. The proposed method could locate and detect target nodules accurately with a mean average precision of 92.79% with more than 9000 patient images. In addition, the detection rate has accelerated to >16 frames per second, four times faster than that of the initial network. Therefore, it can meet the requirements of clinical application. The performance of the fivefold cross-validation was also accurate and robust. The proposed automatic thyroid nodule detection method yields better performance in accuracy and detection speed, which indicates the potential value of our method in assisting clinical ultrasound image interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
weilu发布了新的文献求助10
刚刚
1秒前
嘟嘟发布了新的文献求助10
2秒前
陈开山完成签到,获得积分10
2秒前
梨理栗发布了新的文献求助10
2秒前
2秒前
alex发布了新的文献求助10
3秒前
3秒前
LaTeXer应助隐形夕阳采纳,获得50
3秒前
lw发布了新的文献求助10
4秒前
4秒前
英姑应助Janusfaces采纳,获得10
4秒前
4秒前
plasmid完成签到,获得积分10
5秒前
Ava应助咕噜咕噜咕嘟咕嘟采纳,获得10
5秒前
6秒前
SHAO应助一块司康饼采纳,获得100
6秒前
嗯哼发布了新的文献求助10
6秒前
Rondab应助mariawang采纳,获得10
8秒前
MchemG应助酷酷的紫南采纳,获得30
9秒前
1111发布了新的文献求助10
9秒前
9秒前
continue发布了新的文献求助10
10秒前
zhangtong发布了新的文献求助10
10秒前
嘟嘟完成签到,获得积分10
10秒前
wdy111应助葡萄味的果茶采纳,获得20
11秒前
悦耳代真完成签到,获得积分10
11秒前
ysx完成签到,获得积分10
11秒前
12秒前
Orange应助淡淡夕阳采纳,获得10
12秒前
12秒前
yar重新开启了yl文献应助
13秒前
14秒前
14秒前
zhoup完成签到,获得积分20
15秒前
宝海青完成签到,获得积分10
15秒前
李健应助缓慢的含双采纳,获得10
15秒前
yqb完成签到,获得积分10
16秒前
上官若男应助笑点低的不采纳,获得10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021