Graphite as anode materials: Fundamental mechanism, recent progress and advances

材料科学 插层(化学) 阳极 锂(药物) 石墨 纳米技术 扩散 电化学 储能 电极 热力学 复合材料 无机化学 物理化学 化学 功率(物理) 物理 内分泌学 医学
作者
Hao Zhang,Yang Yang,Dongsheng Ren,Li Wang,Xiangming He
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:36: 147-170 被引量:613
标识
DOI:10.1016/j.ensm.2020.12.027
摘要

Graphite is a perfect anode and has dominated the anode materials since the birth of lithium ion batteries, benefiting from its incomparable balance of relatively low cost, abundance, high energy density, power density, and very long cycle life. Recent research indicates that the lithium storage performance of graphite can be further improved, demonstrating the promising perspective of graphite and in future advanced LIBs for electric vehicles and grid-scale energy storage stations. However, to obtain graphite electrodes with higher performance, it is essential to deeply understand the fundamentals of graphite and Li-graphite intercalation compounds (GICs), especially their crystal and electronic structures, and thus to regulate the structure to boost the kinetics of Li ion intercalation, storage, and diffusion in graphite. We introduce the crystal and electronic properties of pristine graphite and Li-GICs, specifically focusing on the development of theoretical calculations and their application in elucidating the band structure, stages, and phase stabilities of graphite and Li-GIC. Based on these fundamental aspects, the experimental researches on thermodynamics/kinetics, including electrochemical potential and Li diffusion rate of graphite anodes, are reviewed. Several key challenges and issues towards advanced graphite anodes with superior rate/capacity/cycle performances are discussed. In addition, advances of graphite and related materials for Na+/K+ storage are briefly summarized. Finally, we propose a series of promising strategies to improve the performance of graphite and recommend several research directions towards rational graphite anode design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到,获得积分20
刚刚
求助完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
自由完成签到 ,获得积分10
3秒前
酷炫的小紫完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
英姑应助Zzz采纳,获得10
6秒前
7秒前
啦啦啦发布了新的文献求助10
7秒前
852应助zzzq采纳,获得10
7秒前
JinghaoLi完成签到 ,获得积分10
7秒前
刚少kk完成签到,获得积分10
7秒前
林夏果发布了新的文献求助10
7秒前
求助发布了新的文献求助100
7秒前
方大完成签到,获得积分10
8秒前
hanlixuan完成签到 ,获得积分10
9秒前
归海子轩完成签到 ,获得积分10
11秒前
yecheng完成签到,获得积分10
11秒前
月亮啊关注了科研通微信公众号
12秒前
13秒前
diqiu完成签到 ,获得积分10
13秒前
13秒前
殷勤的秋荷完成签到,获得积分10
14秒前
CodeCraft应助malele采纳,获得10
15秒前
Danaus完成签到 ,获得积分20
15秒前
15秒前
机器猫nzy完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
miss起完成签到 ,获得积分10
18秒前
hejilianglove发布了新的文献求助10
19秒前
laochen发布了新的文献求助10
19秒前
21秒前
啦啦啦完成签到,获得积分10
22秒前
22秒前
22秒前
自觉的黑夜完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662463
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750686
捐赠科研通 2933115
什么是DOI,文献DOI怎么找? 1605919
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743