Improving Generalization of Reinforcement Learning with Minimax Distributional Soft Actor-Critic

强化学习 极小极大 一般化 计算机科学 对抗制 随机性 人工智能 动作(物理) 对手 功能(生物学) 数学优化 贝尔曼方程 机器学习 计算机安全 数学 进化生物学 生物 量子力学 统计 物理 数学分析
作者
Yangang Ren,Jingliang Duan,Shengbo Eben Li,Yang Guan,Qi Sun
标识
DOI:10.1109/itsc45102.2020.9294300
摘要

Reinforcement learning (RL) has achieved remarkable performance in numerous sequential decision making and control tasks. However, a common problem is that learned nearly optimal policy always overfits to the training environment and may not be extended to situations never encountered during training. For practical applications, the randomness of environment usually leads to some devastating events, which should be the focus of safety-critical systems such as autonomous driving. In this paper, we introduce the minimax formulation and distributional framework to improve the generalization ability of RL algorithms and develop the Minimax Distributional Soft Actor-Critic (Minimax DSAC) algorithm. Minimax formulation aims to seek optimal policy considering the most severe variations from environment, in which the protagonist policy maximizes action-value function while the adversary policy tries to minimize it. Distributional framework aims to learn a state-action return distribution, from which we can model the risk of different returns explicitly, thereby formulating a risk-averse protagonist policy and a risk-seeking adversarial policy. We implement our method on the decision-making tasks of autonomous vehicles at intersections and test the trained policy in distinct environments. Results demonstrate that our method can greatly improve the generalization ability of the protagonist agent to different environmental variations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐于助人大好人完成签到 ,获得积分10
刚刚
北地风情完成签到 ,获得积分10
刚刚
刚刚
辛涩发布了新的文献求助10
1秒前
刘开阳发布了新的文献求助10
3秒前
T012完成签到,获得积分10
6秒前
7秒前
爆米花应助微笑耳机采纳,获得10
9秒前
不安毛豆发布了新的文献求助20
9秒前
ZetianYang发布了新的文献求助10
9秒前
11秒前
贺英发布了新的文献求助10
12秒前
哈哈完成签到,获得积分10
12秒前
13秒前
13秒前
小蘑菇应助知足且上进采纳,获得10
13秒前
14秒前
元复天发布了新的文献求助10
15秒前
我是老大应助fff采纳,获得10
15秒前
16秒前
16秒前
zzz发布了新的文献求助10
17秒前
坚定的跳跳糖完成签到 ,获得积分10
18秒前
酷波er应助赶路人采纳,获得10
18秒前
畅快老虎应助不安毛豆采纳,获得20
19秒前
20秒前
搜集达人应助嘉嘉采纳,获得10
20秒前
20秒前
CQ发布了新的文献求助10
20秒前
CodeCraft应助ZetianYang采纳,获得10
20秒前
23秒前
24秒前
25秒前
26秒前
27秒前
在水一方应助清秀的雨双采纳,获得30
27秒前
29秒前
香蕉觅云应助卡他采纳,获得10
29秒前
风趣的涵柏完成签到,获得积分10
29秒前
edenz完成签到,获得积分10
30秒前
高分求助中
All the Birds of the World 3000
General Equilibrium, Capital and Macroeconomics 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Synthesis of Novel Salt-Resistant and High-Temperature Hydroxyapatite Nanoparticle for Rheology, Lubricity, Surface Tension, and Filtration Property Modifications of Water-Based Drilling Mud 300
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3724105
求助须知:如何正确求助?哪些是违规求助? 3269638
关于积分的说明 9961480
捐赠科研通 2984162
什么是DOI,文献DOI怎么找? 1637237
邀请新用户注册赠送积分活动 777413
科研通“疑难数据库(出版商)”最低求助积分说明 747008