Fully Automated Segmentation of Alveolar Bone Using Deep Convolutional Neural Networks from Intraoral Ultrasound Images

卷积神经网络 计算机科学 人工智能 分割 豪斯多夫距离 超声波 牙槽 基本事实 深度学习 锥束ct 射线照相术 计算机视觉 模式识别(心理学) 放射科 医学 计算机断层摄影术 口腔正畸科
作者
Dat Q. Duong,Khoa D. Nguyen,Neelambar R. Kaipatur,Edmond Lou,Michelle Noga,Paul W. Major,Kumaradevan Punithakumar,Lawrence H. Le
标识
DOI:10.1109/embc.2019.8857060
摘要

Delineation of alveolar bone aids the diagnosis and treatment of periodontal diseases. In current practice, conventional 2D radiography and 3D cone-beam computed tomography (CBCT) imaging are used as the non-invasive approaches to image and delineate alveolar bone structures. Recently, high-frequency ultrasound imaging is proposed as an alternative to conventional imaging methods to prevent the harmful effects of ionizing radiation. However, the manual delineation of alveolar bone from ultrasound imaging is time-consuming and subject to inter and intraobserver variability. This study proposes to use a convolutional neural network-based machine learning framework to automatically segment the alveolar bone from ultrasound images. The proposed method consists of a homomorphic filtering based noise reduction and a u-net machine learning framework for automated delineation. The proposed method was evaluated over 15 ultrasound images of tooth acquired from procine specimens. The comparisons against manual ground truth delineations performed by three experts in terms of mean Dice score and Hausdorff distance values demonstrate that the proposed method yielded an improved performance over a recent state of the art graph cuts based method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
柚子发布了新的文献求助10
2秒前
3秒前
12完成签到,获得积分10
4秒前
alan发布了新的文献求助10
4秒前
顾矜应助淡定的不言采纳,获得10
5秒前
6秒前
tepqi完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
毛於菟发布了新的文献求助10
8秒前
9秒前
容二遥关注了科研通微信公众号
9秒前
布噜噜噜噜完成签到,获得积分10
9秒前
9秒前
10秒前
大模型应助eblog采纳,获得10
10秒前
Ting发布了新的文献求助20
10秒前
11秒前
端庄龙猫发布了新的文献求助30
11秒前
juaner完成签到,获得积分10
11秒前
KAI发布了新的文献求助10
12秒前
天天快乐应助二维马采纳,获得10
12秒前
12秒前
徐sir发布了新的文献求助10
12秒前
牛战士完成签到,获得积分10
13秒前
FSS完成签到,获得积分20
13秒前
YANYAN发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
cc应助Kycg采纳,获得20
14秒前
alan完成签到,获得积分10
14秒前
14秒前
muchen发布了新的文献求助10
15秒前
16秒前
JJ发布了新的文献求助10
17秒前
17秒前
小兵发布了新的文献求助10
17秒前
18秒前
lsl599应助guojingjing采纳,获得10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049