生物
血管平滑肌
KLF4公司
新生内膜
内分泌学
生物化学
内科学
化学
细胞生物学
转录因子
医学
基因
SOX2
再狭窄
支架
平滑肌
作者
Felipe Paredes,Holly C. Williams,Raymundo A. Quintana,Alejandra San Martín
出处
期刊:Circulation Research
[Ovid Technologies (Wolters Kluwer)]
日期:2020-01-03
卷期号:126 (1): 41-56
被引量:25
标识
DOI:10.1161/circresaha.119.315932
摘要
Rationale: The mitochondrial Poldip2 (protein polymerase interacting protein 2) is required for the activity of the tricarboxylic acid cycle. As a consequence, Poldip2 deficiency induces metabolic reprograming with repressed mitochondrial respiration and increased glycolytic activity. Though homozygous deletion of Poldip2 is lethal, heterozygous mice are viable and show protection against aneurysm and injury-induced neointimal hyperplasia, diseases linked to loss of vascular smooth muscle differentiation. Thus, we hypothesize that the metabolic reprograming induced by Poldip2 deficiency controls VSMC differentiation. Objective: To determine the role of Poldip2-mediated metabolic reprograming in phenotypic modulation of VSMC. Methods and Results: We show that Poldip2 deficiency in vascular smooth muscle in vitro and in vivo induces the expression of the SRF (serum response factor), myocardin, and MRTFA (myocardin-related transcription factor A) and dramatically represses KLF4 (Krüppel-like factor 4). Consequently, Poldip2-deficient VSMC and mouse aorta express high levels of contractile proteins and, more significantly, these cells do not dedifferentiate nor acquire macrophage-like characteristics when exposed to cholesterol or PDGF (platelet-derived growth factor). Regarding the mechanism, we found that Poldip2 deficiency upregulates the hexosamine biosynthetic pathway and OGT (O-linked N-acetylglucosamine transferase)-mediated protein O-GlcNAcylation. Increased protein glycosylation causes the inhibition of a nuclear ubiquitin proteasome system responsible for SRF stabilization and KLF4 repression and is required for the establishment of the differentiated phenotype in Poldip2-deficient cells. Conclusions: Our data show that Poldip2 deficiency induces a highly differentiated phenotype in VSMCs through a mechanism that involves regulation of metabolism and proteostasis. Additionally, our study positions mitochondria-initiated signaling as key element of the VSMC differentiation programs that can be targeted to modulate VSMC phenotype during vascular diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI