过电位
电催化剂
材料科学
柯肯德尔效应
化学工程
异质结
碳纳米纤维
纳米技术
纳米纤维
析氧
静电纺丝
制作
多孔性
光电子学
化学
碳纳米管
物理化学
电极
电化学
复合材料
聚合物
替代医学
冶金
病理
工程类
医学
作者
Tongfei Li,Sulin Li,Qianyu Liu,Ye-Chao Tian,Yiwei Zhang,Gengtao Fu,Yawen Tang
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2019-10-14
卷期号:7 (21): 17950-17957
被引量:125
标识
DOI:10.1021/acssuschemeng.9b04699
摘要
Exploring highly efficient and cost-effective electrocatalysts with more feasible synthesis strategies toward oxygen evolution reaction (OER) is highly desirable for a broad range of advanced sustainable energy conversion systems. Herein, we develop a feasible electrospinning strategy for the facile fabrication of a Co3O4/CeO2 heterostructure in situ embedded in N-doped carbon nanofibers (h-Co3O4/CeO2@N-CNFs) as a high-performance electrocatalyst for the OER. Unlike previously reported Co3O4/CeO2 composites, the as-prepared Co3O4/CeO2 heterostructure presents hollow and porous features. The nanopores can develop within Co3O4/CeO2 nanocrystals with an analogous mechanism to void formation in the Kirkendall effect. Electrochemical measurements demonstrate that h-Co3O4/CeO2@N-CNFs can enable high OER activity with a low overpotential of 310 mV to achieve 10 mA cm–2 current density and good stability that can maintain 40 000 s without perceptible attenuation, outperforming those of the commercial RuO2 catalyst. The outstanding OER performance originates from the important synergies by combining hollow Co3O4/CeO2 heterostructures and three-dimensional porous N-CNF networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI