Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior

人工智能 计算机科学 分割 深度学习 先验概率 模式识别(心理学) 图像分割 领域知识 医学影像学 监督学习 注释 贝叶斯网络 计算机视觉 贝叶斯概率 机器学习 人工神经网络
作者
Han Zheng,Lanfen Lin,Hongjie Hu,Qiaowei Zhang,Qingqing Chen,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Ruofeng Tong,Jian Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 148-156 被引量:64
标识
DOI:10.1007/978-3-030-32226-7_17
摘要

Medical image segmentation is one of the most important steps in computer-aided intervention and diagnosis. Although deep learning-based segmentation methods have achieved great success in computer vision domain, there are still several challenges in medical image domain. In comparison with natural images, medical image databases are usually small because the annotation is extremely time-consuming and requires expert knowledge. Thus, effective use of unannotated data is essential for medical image segmentation. On the other hand, medical images have many anatomical priors in comparison to non-medical images such as the shape and position of organs. Incorporating the anatomical prior knowledge in deep learning is a vital issue for accurate medical image segmentation. To address these two problems, in this paper we proposed a semi-supervised adversarial learning model with Deep Atlas Prior (DAP) to improve the accuracy of liver segmentation in CT images. We trained the semi-supervised adversarial learning model using both annotated and unannotated images. The DAP, which is based on the probability atlas of organ (liver) and contains prior information such as the shape and position, is combined with the conventional focal loss to aid segmentation. We call the combined loss as Bayesian loss and the conventional focal loss that utilizes the predicted probabilities of training data in the previous learning epoch as a likelihood loss. Experiments on ISBI LiTS 2017 challenge dataset showed that the performance of the semi-supervised network was significantly improved by incorporating with DAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彦成完成签到,获得积分10
刚刚
1秒前
完美大神完成签到 ,获得积分10
1秒前
李健的小迷弟应助小豹子采纳,获得10
3秒前
慕青应助愉快的花卷采纳,获得10
7秒前
8秒前
深情安青应助热情的笑白采纳,获得10
12秒前
pluto应助三石盟约采纳,获得10
14秒前
xdmhv发布了新的文献求助10
16秒前
16秒前
义气天真完成签到,获得积分10
16秒前
tooheys1000完成签到,获得积分10
18秒前
18秒前
向浩完成签到 ,获得积分10
20秒前
木子水告完成签到,获得积分10
21秒前
穆青发布了新的文献求助10
22秒前
23秒前
穆青完成签到,获得积分10
32秒前
32秒前
lllhy完成签到,获得积分10
33秒前
33秒前
乔尔司空完成签到,获得积分10
34秒前
Jasper应助清风采纳,获得10
35秒前
36秒前
冲浪男孩226完成签到,获得积分10
36秒前
Aiden完成签到,获得积分10
36秒前
37秒前
咚咚锵发布了新的文献求助10
38秒前
ghgbhgybh发布了新的文献求助10
38秒前
zxzxzx应助科研通管家采纳,获得10
40秒前
大模型应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
Ning应助科研通管家采纳,获得10
41秒前
香蕉觅云应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
英姑应助科研通管家采纳,获得10
41秒前
BowieHuang应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
俭朴晓凡应助科研通管家采纳,获得10
41秒前
深情安青应助科研通管家采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560435
求助须知:如何正确求助?哪些是违规求助? 4645604
关于积分的说明 14675724
捐赠科研通 4586775
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460989