Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior

人工智能 计算机科学 分割 深度学习 先验概率 模式识别(心理学) 图像分割 领域知识 医学影像学 监督学习 注释 贝叶斯网络 计算机视觉 贝叶斯概率 机器学习 人工神经网络
作者
Han Zheng,Lanfen Lin,Hongjie Hu,Qiaowei Zhang,Qingqing Chen,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Ruofeng Tong,Jian Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 148-156 被引量:64
标识
DOI:10.1007/978-3-030-32226-7_17
摘要

Medical image segmentation is one of the most important steps in computer-aided intervention and diagnosis. Although deep learning-based segmentation methods have achieved great success in computer vision domain, there are still several challenges in medical image domain. In comparison with natural images, medical image databases are usually small because the annotation is extremely time-consuming and requires expert knowledge. Thus, effective use of unannotated data is essential for medical image segmentation. On the other hand, medical images have many anatomical priors in comparison to non-medical images such as the shape and position of organs. Incorporating the anatomical prior knowledge in deep learning is a vital issue for accurate medical image segmentation. To address these two problems, in this paper we proposed a semi-supervised adversarial learning model with Deep Atlas Prior (DAP) to improve the accuracy of liver segmentation in CT images. We trained the semi-supervised adversarial learning model using both annotated and unannotated images. The DAP, which is based on the probability atlas of organ (liver) and contains prior information such as the shape and position, is combined with the conventional focal loss to aid segmentation. We call the combined loss as Bayesian loss and the conventional focal loss that utilizes the predicted probabilities of training data in the previous learning epoch as a likelihood loss. Experiments on ISBI LiTS 2017 challenge dataset showed that the performance of the semi-supervised network was significantly improved by incorporating with DAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘家成发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
aldeheby应助闷声发采纳,获得10
3秒前
ljy1111发布了新的文献求助10
3秒前
3秒前
3秒前
泅渡完成签到,获得积分20
4秒前
vigor完成签到 ,获得积分10
4秒前
4秒前
5秒前
逗逗发布了新的文献求助10
5秒前
orixero应助Iris采纳,获得10
5秒前
5秒前
鹅鹅完成签到 ,获得积分10
5秒前
hard完成签到,获得积分10
6秒前
CocoGabrielle完成签到,获得积分10
6秒前
6秒前
的奖学金喜欢喜欢大呼小叫难受完成签到 ,获得积分10
7秒前
ABC的FGH发布了新的文献求助10
7秒前
7秒前
思源应助韩妙采纳,获得10
7秒前
研友_8yN60L完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
子晏发布了新的文献求助10
9秒前
wuyoucaoxin完成签到,获得积分10
10秒前
直率初露发布了新的文献求助10
10秒前
yc发布了新的文献求助10
11秒前
科研通AI2S应助lidd采纳,获得10
11秒前
fff完成签到,获得积分10
11秒前
平淡惋清发布了新的文献求助10
12秒前
12秒前
12秒前
小窝发布了新的文献求助10
12秒前
Akim应助itharmony采纳,获得10
13秒前
czt完成签到,获得积分10
13秒前
ZHa0发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342