Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior

人工智能 计算机科学 分割 深度学习 先验概率 模式识别(心理学) 图像分割 领域知识 医学影像学 监督学习 注释 贝叶斯网络 计算机视觉 贝叶斯概率 机器学习 人工神经网络
作者
Han Zheng,Lanfen Lin,Hongjie Hu,Qiaowei Zhang,Qingqing Chen,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Ruofeng Tong,Jian Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 148-156 被引量:64
标识
DOI:10.1007/978-3-030-32226-7_17
摘要

Medical image segmentation is one of the most important steps in computer-aided intervention and diagnosis. Although deep learning-based segmentation methods have achieved great success in computer vision domain, there are still several challenges in medical image domain. In comparison with natural images, medical image databases are usually small because the annotation is extremely time-consuming and requires expert knowledge. Thus, effective use of unannotated data is essential for medical image segmentation. On the other hand, medical images have many anatomical priors in comparison to non-medical images such as the shape and position of organs. Incorporating the anatomical prior knowledge in deep learning is a vital issue for accurate medical image segmentation. To address these two problems, in this paper we proposed a semi-supervised adversarial learning model with Deep Atlas Prior (DAP) to improve the accuracy of liver segmentation in CT images. We trained the semi-supervised adversarial learning model using both annotated and unannotated images. The DAP, which is based on the probability atlas of organ (liver) and contains prior information such as the shape and position, is combined with the conventional focal loss to aid segmentation. We call the combined loss as Bayesian loss and the conventional focal loss that utilizes the predicted probabilities of training data in the previous learning epoch as a likelihood loss. Experiments on ISBI LiTS 2017 challenge dataset showed that the performance of the semi-supervised network was significantly improved by incorporating with DAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
彭于晏应助纯真雁菱采纳,获得10
刚刚
sine发布了新的文献求助10
1秒前
Cc8发布了新的文献求助100
1秒前
你爹完成签到 ,获得积分10
2秒前
领导范儿应助麦丰采纳,获得10
3秒前
阿鱼阿鱼完成签到 ,获得积分10
4秒前
4秒前
电闪完成签到,获得积分10
5秒前
专一的元柏完成签到 ,获得积分10
7秒前
陈强发布了新的文献求助10
9秒前
宁静致远QY完成签到,获得积分10
9秒前
10秒前
HMLM完成签到,获得积分10
10秒前
封夕完成签到 ,获得积分10
10秒前
二由发布了新的文献求助10
10秒前
加油完成签到,获得积分10
11秒前
阿鱼阿鱼关注了科研通微信公众号
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
14秒前
15秒前
liuxy发布了新的文献求助10
16秒前
万能图书馆应助fyy采纳,获得10
16秒前
kate发布了新的文献求助10
16秒前
17秒前
17秒前
LL发布了新的文献求助10
17秒前
Alden发布了新的文献求助10
18秒前
廖天佑完成签到,获得积分0
18秒前
phil发布了新的文献求助10
18秒前
浮游应助喽噜嘟咦呀采纳,获得10
20秒前
pigzhu完成签到 ,获得积分10
22秒前
22秒前
陈强完成签到,获得积分10
25秒前
25秒前
25秒前
FashionBoy应助梁不正采纳,获得10
26秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499624
求助须知:如何正确求助?哪些是违规求助? 4596396
关于积分的说明 14454419
捐赠科研通 4529576
什么是DOI,文献DOI怎么找? 2482089
邀请新用户注册赠送积分活动 1466061
关于科研通互助平台的介绍 1438891