Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior

人工智能 计算机科学 分割 深度学习 先验概率 模式识别(心理学) 图像分割 领域知识 医学影像学 监督学习 注释 贝叶斯网络 计算机视觉 贝叶斯概率 机器学习 人工神经网络
作者
Han Zheng,Lanfen Lin,Hongjie Hu,Qiaowei Zhang,Qingqing Chen,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Ruofeng Tong,Jian Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 148-156 被引量:64
标识
DOI:10.1007/978-3-030-32226-7_17
摘要

Medical image segmentation is one of the most important steps in computer-aided intervention and diagnosis. Although deep learning-based segmentation methods have achieved great success in computer vision domain, there are still several challenges in medical image domain. In comparison with natural images, medical image databases are usually small because the annotation is extremely time-consuming and requires expert knowledge. Thus, effective use of unannotated data is essential for medical image segmentation. On the other hand, medical images have many anatomical priors in comparison to non-medical images such as the shape and position of organs. Incorporating the anatomical prior knowledge in deep learning is a vital issue for accurate medical image segmentation. To address these two problems, in this paper we proposed a semi-supervised adversarial learning model with Deep Atlas Prior (DAP) to improve the accuracy of liver segmentation in CT images. We trained the semi-supervised adversarial learning model using both annotated and unannotated images. The DAP, which is based on the probability atlas of organ (liver) and contains prior information such as the shape and position, is combined with the conventional focal loss to aid segmentation. We call the combined loss as Bayesian loss and the conventional focal loss that utilizes the predicted probabilities of training data in the previous learning epoch as a likelihood loss. Experiments on ISBI LiTS 2017 challenge dataset showed that the performance of the semi-supervised network was significantly improved by incorporating with DAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助WJY采纳,获得10
1秒前
1秒前
Panini完成签到 ,获得积分10
2秒前
zhang完成签到 ,获得积分10
3秒前
她的城完成签到,获得积分0
4秒前
韩祖完成签到 ,获得积分10
4秒前
科研通AI6应助垣味栗子酱采纳,获得10
5秒前
Ellalala完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
草木发布了新的文献求助10
9秒前
9秒前
Much完成签到 ,获得积分10
12秒前
凡华完成签到 ,获得积分10
14秒前
奋进中的科研小菜鸟完成签到,获得积分10
15秒前
18秒前
星空完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
23秒前
巧克力完成签到 ,获得积分10
23秒前
HU完成签到,获得积分10
24秒前
垣味栗子酱完成签到,获得积分20
25秒前
胖胖玩啊玩完成签到 ,获得积分10
27秒前
Tammy完成签到,获得积分10
27秒前
阿伟完成签到,获得积分10
29秒前
无极微光应助白华苍松采纳,获得20
30秒前
酷酷的安柏完成签到 ,获得积分10
31秒前
32秒前
lovekobe完成签到 ,获得积分10
32秒前
鲁卓林完成签到,获得积分10
32秒前
甜美傲蕾完成签到,获得积分10
33秒前
33秒前
yunt完成签到 ,获得积分10
35秒前
小高完成签到 ,获得积分10
36秒前
kyros完成签到,获得积分10
37秒前
Java完成签到,获得积分10
37秒前
老实的黑米完成签到 ,获得积分10
38秒前
亲爱的桃乐茜完成签到 ,获得积分10
38秒前
WW完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
41秒前
七yy完成签到 ,获得积分10
41秒前
甜蜜冷风完成签到,获得积分10
43秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590