亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior

人工智能 计算机科学 分割 深度学习 先验概率 模式识别(心理学) 图像分割 领域知识 医学影像学 监督学习 注释 贝叶斯网络 计算机视觉 贝叶斯概率 机器学习 人工神经网络
作者
Han Zheng,Lanfen Lin,Hongjie Hu,Qiaowei Zhang,Qingqing Chen,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Ruofeng Tong,Jian Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 148-156 被引量:64
标识
DOI:10.1007/978-3-030-32226-7_17
摘要

Medical image segmentation is one of the most important steps in computer-aided intervention and diagnosis. Although deep learning-based segmentation methods have achieved great success in computer vision domain, there are still several challenges in medical image domain. In comparison with natural images, medical image databases are usually small because the annotation is extremely time-consuming and requires expert knowledge. Thus, effective use of unannotated data is essential for medical image segmentation. On the other hand, medical images have many anatomical priors in comparison to non-medical images such as the shape and position of organs. Incorporating the anatomical prior knowledge in deep learning is a vital issue for accurate medical image segmentation. To address these two problems, in this paper we proposed a semi-supervised adversarial learning model with Deep Atlas Prior (DAP) to improve the accuracy of liver segmentation in CT images. We trained the semi-supervised adversarial learning model using both annotated and unannotated images. The DAP, which is based on the probability atlas of organ (liver) and contains prior information such as the shape and position, is combined with the conventional focal loss to aid segmentation. We call the combined loss as Bayesian loss and the conventional focal loss that utilizes the predicted probabilities of training data in the previous learning epoch as a likelihood loss. Experiments on ISBI LiTS 2017 challenge dataset showed that the performance of the semi-supervised network was significantly improved by incorporating with DAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
null完成签到,获得积分0
8秒前
走啊走应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
闪闪的YOSH完成签到,获得积分10
34秒前
2分钟前
pups发布了新的文献求助20
2分钟前
英俊的铭应助pups采纳,获得30
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
森林发布了新的文献求助10
3分钟前
zhangxiaoqing发布了新的文献求助10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
知性的剑身完成签到,获得积分10
4分钟前
DocChen发布了新的文献求助10
5分钟前
xiaoqingnian完成签到,获得积分10
5分钟前
小粒橙完成签到 ,获得积分10
5分钟前
猫抓板完成签到,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
7分钟前
万能图书馆应助猫抓板采纳,获得10
7分钟前
8分钟前
猫抓板发布了新的文献求助10
8分钟前
路人应助Magali采纳,获得200
8分钟前
小蘑菇应助猫抓板采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
大园完成签到 ,获得积分10
8分钟前
8分钟前
领导范儿应助Magali采纳,获得150
8分钟前
猫抓板发布了新的文献求助10
8分钟前
昭昭完成签到,获得积分10
8分钟前
8分钟前
Magali发布了新的文献求助150
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671257
求助须知:如何正确求助?哪些是违规求助? 4912973
关于积分的说明 15134310
捐赠科研通 4830056
什么是DOI,文献DOI怎么找? 2586666
邀请新用户注册赠送积分活动 1540282
关于科研通互助平台的介绍 1498486