Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior

人工智能 计算机科学 分割 深度学习 先验概率 模式识别(心理学) 图像分割 领域知识 医学影像学 监督学习 注释 贝叶斯网络 计算机视觉 贝叶斯概率 机器学习 人工神经网络
作者
Han Zheng,Lanfen Lin,Hongjie Hu,Qiaowei Zhang,Qingqing Chen,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Ruofeng Tong,Jian Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 148-156 被引量:64
标识
DOI:10.1007/978-3-030-32226-7_17
摘要

Medical image segmentation is one of the most important steps in computer-aided intervention and diagnosis. Although deep learning-based segmentation methods have achieved great success in computer vision domain, there are still several challenges in medical image domain. In comparison with natural images, medical image databases are usually small because the annotation is extremely time-consuming and requires expert knowledge. Thus, effective use of unannotated data is essential for medical image segmentation. On the other hand, medical images have many anatomical priors in comparison to non-medical images such as the shape and position of organs. Incorporating the anatomical prior knowledge in deep learning is a vital issue for accurate medical image segmentation. To address these two problems, in this paper we proposed a semi-supervised adversarial learning model with Deep Atlas Prior (DAP) to improve the accuracy of liver segmentation in CT images. We trained the semi-supervised adversarial learning model using both annotated and unannotated images. The DAP, which is based on the probability atlas of organ (liver) and contains prior information such as the shape and position, is combined with the conventional focal loss to aid segmentation. We call the combined loss as Bayesian loss and the conventional focal loss that utilizes the predicted probabilities of training data in the previous learning epoch as a likelihood loss. Experiments on ISBI LiTS 2017 challenge dataset showed that the performance of the semi-supervised network was significantly improved by incorporating with DAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
卜卜脆完成签到,获得积分10
3秒前
nanlinhua完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
fui发布了新的文献求助10
5秒前
无花果应助LIHANB采纳,获得10
5秒前
7秒前
科研顺利发布了新的文献求助10
7秒前
鸽子完成签到,获得积分10
8秒前
8秒前
10秒前
传奇3应助玛卡巴卡采纳,获得10
11秒前
12秒前
summuryi完成签到,获得积分20
12秒前
斯文香彤完成签到,获得积分10
13秒前
15秒前
15秒前
苗元槐完成签到 ,获得积分10
15秒前
田様应助Piggy采纳,获得10
16秒前
16秒前
16秒前
17秒前
18秒前
19秒前
nav完成签到 ,获得积分10
20秒前
YXY发布了新的文献求助10
20秒前
领导范儿应助鸡蛋采纳,获得10
21秒前
Jem发布了新的文献求助10
23秒前
23秒前
丶呆久自然萌完成签到,获得积分10
24秒前
27秒前
嘟噜噜完成签到,获得积分10
29秒前
Jem完成签到,获得积分10
29秒前
myth发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
30秒前
香蕉觅云应助sunsnowaa采纳,获得10
31秒前
烟花应助呃呃呃c采纳,获得10
31秒前
魂断红颜发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758