Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior

人工智能 计算机科学 分割 深度学习 先验概率 模式识别(心理学) 图像分割 领域知识 医学影像学 监督学习 注释 贝叶斯网络 计算机视觉 贝叶斯概率 机器学习 人工神经网络
作者
Han Zheng,Lanfen Lin,Hongjie Hu,Qiaowei Zhang,Qingqing Chen,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Ruofeng Tong,Jian Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 148-156 被引量:64
标识
DOI:10.1007/978-3-030-32226-7_17
摘要

Medical image segmentation is one of the most important steps in computer-aided intervention and diagnosis. Although deep learning-based segmentation methods have achieved great success in computer vision domain, there are still several challenges in medical image domain. In comparison with natural images, medical image databases are usually small because the annotation is extremely time-consuming and requires expert knowledge. Thus, effective use of unannotated data is essential for medical image segmentation. On the other hand, medical images have many anatomical priors in comparison to non-medical images such as the shape and position of organs. Incorporating the anatomical prior knowledge in deep learning is a vital issue for accurate medical image segmentation. To address these two problems, in this paper we proposed a semi-supervised adversarial learning model with Deep Atlas Prior (DAP) to improve the accuracy of liver segmentation in CT images. We trained the semi-supervised adversarial learning model using both annotated and unannotated images. The DAP, which is based on the probability atlas of organ (liver) and contains prior information such as the shape and position, is combined with the conventional focal loss to aid segmentation. We call the combined loss as Bayesian loss and the conventional focal loss that utilizes the predicted probabilities of training data in the previous learning epoch as a likelihood loss. Experiments on ISBI LiTS 2017 challenge dataset showed that the performance of the semi-supervised network was significantly improved by incorporating with DAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mn略略略发布了新的文献求助10
刚刚
1234567发布了新的文献求助10
1秒前
李健应助哭泣绝音采纳,获得10
1秒前
HY完成签到,获得积分10
1秒前
2秒前
四个空格发布了新的文献求助10
2秒前
2秒前
万能图书馆应助沉默的驳采纳,获得10
2秒前
胡英俊完成签到,获得积分10
2秒前
3秒前
sota发布了新的文献求助10
3秒前
3秒前
红墨完成签到,获得积分10
3秒前
科研干冲冲冲完成签到,获得积分20
4秒前
今后应助精神的精神病采纳,获得10
4秒前
小南完成签到,获得积分10
4秒前
小五发布了新的文献求助20
5秒前
gyh完成签到,获得积分10
5秒前
无极微光应助125676采纳,获得20
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
时荒发布了新的文献求助10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得30
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
小乔应助科研通管家采纳,获得10
7秒前
小乔应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
spc68应助科研通管家采纳,获得10
7秒前
Mine_cherry应助科研通管家采纳,获得80
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659634
求助须知:如何正确求助?哪些是违规求助? 4829587
关于积分的说明 15087769
捐赠科研通 4818327
什么是DOI,文献DOI怎么找? 2578595
邀请新用户注册赠送积分活动 1533172
关于科研通互助平台的介绍 1491902