清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior

人工智能 计算机科学 分割 深度学习 先验概率 模式识别(心理学) 图像分割 领域知识 医学影像学 监督学习 注释 贝叶斯网络 计算机视觉 贝叶斯概率 机器学习 人工神经网络
作者
Han Zheng,Lanfen Lin,Hongjie Hu,Qiaowei Zhang,Qingqing Chen,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Ruofeng Tong,Jian Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 148-156 被引量:64
标识
DOI:10.1007/978-3-030-32226-7_17
摘要

Medical image segmentation is one of the most important steps in computer-aided intervention and diagnosis. Although deep learning-based segmentation methods have achieved great success in computer vision domain, there are still several challenges in medical image domain. In comparison with natural images, medical image databases are usually small because the annotation is extremely time-consuming and requires expert knowledge. Thus, effective use of unannotated data is essential for medical image segmentation. On the other hand, medical images have many anatomical priors in comparison to non-medical images such as the shape and position of organs. Incorporating the anatomical prior knowledge in deep learning is a vital issue for accurate medical image segmentation. To address these two problems, in this paper we proposed a semi-supervised adversarial learning model with Deep Atlas Prior (DAP) to improve the accuracy of liver segmentation in CT images. We trained the semi-supervised adversarial learning model using both annotated and unannotated images. The DAP, which is based on the probability atlas of organ (liver) and contains prior information such as the shape and position, is combined with the conventional focal loss to aid segmentation. We call the combined loss as Bayesian loss and the conventional focal loss that utilizes the predicted probabilities of training data in the previous learning epoch as a likelihood loss. Experiments on ISBI LiTS 2017 challenge dataset showed that the performance of the semi-supervised network was significantly improved by incorporating with DAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋的新蕾完成签到,获得积分10
2秒前
建建完成签到 ,获得积分10
35秒前
愤怒的念蕾完成签到,获得积分10
37秒前
科目三应助cugwzr采纳,获得10
42秒前
小金刀发布了新的文献求助10
42秒前
小刘同学完成签到,获得积分10
1分钟前
小白完成签到 ,获得积分10
1分钟前
dream完成签到 ,获得积分10
1分钟前
小金刀完成签到,获得积分10
1分钟前
沙海沉戈完成签到,获得积分0
1分钟前
Lucas应助Omni采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
清脆的靖仇完成签到,获得积分10
1分钟前
2分钟前
cugwzr发布了新的文献求助10
2分钟前
3分钟前
3分钟前
sonicker完成签到 ,获得积分10
3分钟前
Lexi发布了新的文献求助10
3分钟前
鲤鱼山人完成签到 ,获得积分10
3分钟前
Omni发布了新的文献求助10
3分钟前
oleskarabach发布了新的文献求助10
3分钟前
华仔应助科研通管家采纳,获得10
3分钟前
年轻千愁完成签到 ,获得积分10
4分钟前
志怪大人完成签到 ,获得积分10
4分钟前
jlwang完成签到,获得积分10
5分钟前
hugeyoung完成签到,获得积分10
5分钟前
oleskarabach完成签到,获得积分20
5分钟前
ceeray23发布了新的文献求助20
5分钟前
小蘑菇应助Lexi采纳,获得10
5分钟前
cugwzr完成签到,获得积分10
5分钟前
yaomax完成签到 ,获得积分10
6分钟前
丘比特应助ceeray23采纳,获得20
6分钟前
阿白完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
搞怪柏柳完成签到 ,获得积分10
6分钟前
as完成签到 ,获得积分10
6分钟前
净心完成签到 ,获得积分10
6分钟前
小鱼女侠完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558693
求助须知:如何正确求助?哪些是违规求助? 4643777
关于积分的说明 14671437
捐赠科研通 4585146
什么是DOI,文献DOI怎么找? 2515397
邀请新用户注册赠送积分活动 1489437
关于科研通互助平台的介绍 1460192