亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior

人工智能 计算机科学 分割 深度学习 先验概率 模式识别(心理学) 图像分割 领域知识 医学影像学 监督学习 注释 贝叶斯网络 计算机视觉 贝叶斯概率 机器学习 人工神经网络
作者
Han Zheng,Lanfen Lin,Hongjie Hu,Qiaowei Zhang,Qingqing Chen,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Ruofeng Tong,Jian Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 148-156 被引量:64
标识
DOI:10.1007/978-3-030-32226-7_17
摘要

Medical image segmentation is one of the most important steps in computer-aided intervention and diagnosis. Although deep learning-based segmentation methods have achieved great success in computer vision domain, there are still several challenges in medical image domain. In comparison with natural images, medical image databases are usually small because the annotation is extremely time-consuming and requires expert knowledge. Thus, effective use of unannotated data is essential for medical image segmentation. On the other hand, medical images have many anatomical priors in comparison to non-medical images such as the shape and position of organs. Incorporating the anatomical prior knowledge in deep learning is a vital issue for accurate medical image segmentation. To address these two problems, in this paper we proposed a semi-supervised adversarial learning model with Deep Atlas Prior (DAP) to improve the accuracy of liver segmentation in CT images. We trained the semi-supervised adversarial learning model using both annotated and unannotated images. The DAP, which is based on the probability atlas of organ (liver) and contains prior information such as the shape and position, is combined with the conventional focal loss to aid segmentation. We call the combined loss as Bayesian loss and the conventional focal loss that utilizes the predicted probabilities of training data in the previous learning epoch as a likelihood loss. Experiments on ISBI LiTS 2017 challenge dataset showed that the performance of the semi-supervised network was significantly improved by incorporating with DAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助噜噜大王采纳,获得10
刚刚
酷波er应助大脸猫4811采纳,获得10
3秒前
Criminology34应助噜噜大王采纳,获得10
16秒前
26秒前
29秒前
大脸猫4811发布了新的文献求助10
31秒前
科研通AI2S应助噜噜大王采纳,获得10
32秒前
52秒前
Criminology34应助噜噜大王采纳,获得10
56秒前
研友_VZG7GZ应助聪明的纸鹤采纳,获得10
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
pjy完成签到 ,获得积分10
2分钟前
想人陪的飞薇完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
Ccccn完成签到,获得积分10
4分钟前
青柳雅春应助科研通管家采纳,获得10
4分钟前
4分钟前
方瑞豪完成签到,获得积分10
4分钟前
5分钟前
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
6分钟前
Criminology34应助标致金毛采纳,获得10
6分钟前
火星完成签到 ,获得积分10
6分钟前
7分钟前
文武贝发布了新的文献求助10
7分钟前
文武贝完成签到,获得积分10
7分钟前
sougardenist完成签到 ,获得积分10
7分钟前
左白易发布了新的文献求助10
8分钟前
8分钟前
在水一方应助Janine采纳,获得10
8分钟前
8分钟前
8分钟前
9分钟前
Ava应助Jieun采纳,获得10
10分钟前
丘比特应助科研通管家采纳,获得30
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568248
求助须知:如何正确求助?哪些是违规求助? 4652712
关于积分的说明 14701953
捐赠科研通 4594562
什么是DOI,文献DOI怎么找? 2521081
邀请新用户注册赠送积分活动 1492895
关于科研通互助平台的介绍 1463698