亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior

人工智能 计算机科学 分割 深度学习 先验概率 模式识别(心理学) 图像分割 领域知识 医学影像学 监督学习 注释 贝叶斯网络 计算机视觉 贝叶斯概率 机器学习 人工神经网络
作者
Han Zheng,Lanfen Lin,Hongjie Hu,Qiaowei Zhang,Qingqing Chen,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Ruofeng Tong,Jian Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 148-156 被引量:64
标识
DOI:10.1007/978-3-030-32226-7_17
摘要

Medical image segmentation is one of the most important steps in computer-aided intervention and diagnosis. Although deep learning-based segmentation methods have achieved great success in computer vision domain, there are still several challenges in medical image domain. In comparison with natural images, medical image databases are usually small because the annotation is extremely time-consuming and requires expert knowledge. Thus, effective use of unannotated data is essential for medical image segmentation. On the other hand, medical images have many anatomical priors in comparison to non-medical images such as the shape and position of organs. Incorporating the anatomical prior knowledge in deep learning is a vital issue for accurate medical image segmentation. To address these two problems, in this paper we proposed a semi-supervised adversarial learning model with Deep Atlas Prior (DAP) to improve the accuracy of liver segmentation in CT images. We trained the semi-supervised adversarial learning model using both annotated and unannotated images. The DAP, which is based on the probability atlas of organ (liver) and contains prior information such as the shape and position, is combined with the conventional focal loss to aid segmentation. We call the combined loss as Bayesian loss and the conventional focal loss that utilizes the predicted probabilities of training data in the previous learning epoch as a likelihood loss. Experiments on ISBI LiTS 2017 challenge dataset showed that the performance of the semi-supervised network was significantly improved by incorporating with DAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
11秒前
12秒前
Cmqq发布了新的文献求助10
17秒前
wrry完成签到,获得积分10
18秒前
情怀应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
BowieHuang应助科研通管家采纳,获得10
22秒前
陶醉的烤鸡完成签到 ,获得积分10
23秒前
丘比特应助Cmqq采纳,获得10
27秒前
33秒前
36秒前
小年小少发布了新的文献求助10
36秒前
Dr. Chen发布了新的文献求助10
39秒前
令狐冲完成签到 ,获得积分10
39秒前
Cassiel完成签到,获得积分10
42秒前
hahahan完成签到 ,获得积分10
45秒前
上官若男应助Passion采纳,获得10
55秒前
56秒前
lll完成签到 ,获得积分10
57秒前
wrry发布了新的文献求助10
1分钟前
1分钟前
桃桃发布了新的文献求助30
1分钟前
Passion发布了新的文献求助10
1分钟前
ww完成签到 ,获得积分10
1分钟前
绿毛怪完成签到,获得积分10
1分钟前
桃桃完成签到,获得积分10
1分钟前
1分钟前
昵称已挥发发布了新的文献求助200
1分钟前
优美紫槐应助满意的世界采纳,获得100
1分钟前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
2分钟前
科研通AI6应助满意的世界采纳,获得20
2分钟前
2分钟前
ding应助Cmqq采纳,获得10
2分钟前
2分钟前
2分钟前
Krim完成签到 ,获得积分0
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599747
求助须知:如何正确求助?哪些是违规求助? 4685478
关于积分的说明 14838528
捐赠科研通 4670257
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898