Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior

人工智能 计算机科学 分割 深度学习 先验概率 模式识别(心理学) 图像分割 领域知识 医学影像学 监督学习 注释 贝叶斯网络 计算机视觉 贝叶斯概率 机器学习 人工神经网络
作者
Han Zheng,Lanfen Lin,Hongjie Hu,Qiaowei Zhang,Qingqing Chen,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Ruofeng Tong,Jian Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 148-156 被引量:64
标识
DOI:10.1007/978-3-030-32226-7_17
摘要

Medical image segmentation is one of the most important steps in computer-aided intervention and diagnosis. Although deep learning-based segmentation methods have achieved great success in computer vision domain, there are still several challenges in medical image domain. In comparison with natural images, medical image databases are usually small because the annotation is extremely time-consuming and requires expert knowledge. Thus, effective use of unannotated data is essential for medical image segmentation. On the other hand, medical images have many anatomical priors in comparison to non-medical images such as the shape and position of organs. Incorporating the anatomical prior knowledge in deep learning is a vital issue for accurate medical image segmentation. To address these two problems, in this paper we proposed a semi-supervised adversarial learning model with Deep Atlas Prior (DAP) to improve the accuracy of liver segmentation in CT images. We trained the semi-supervised adversarial learning model using both annotated and unannotated images. The DAP, which is based on the probability atlas of organ (liver) and contains prior information such as the shape and position, is combined with the conventional focal loss to aid segmentation. We call the combined loss as Bayesian loss and the conventional focal loss that utilizes the predicted probabilities of training data in the previous learning epoch as a likelihood loss. Experiments on ISBI LiTS 2017 challenge dataset showed that the performance of the semi-supervised network was significantly improved by incorporating with DAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助苗志伟采纳,获得10
刚刚
hjh发布了新的文献求助20
刚刚
刚刚
wang发布了新的文献求助10
刚刚
无极微光应助RMY采纳,获得20
1秒前
1秒前
1秒前
1秒前
raemourn发布了新的文献求助30
1秒前
随便看看完成签到,获得积分10
1秒前
小二郎应助文静的刺猬采纳,获得10
2秒前
科研通AI6应助想要毕业采纳,获得10
2秒前
张生娣发布了新的文献求助30
3秒前
3秒前
爆米花应助乌漆嘛黑采纳,获得100
3秒前
罗兴鲜发布了新的文献求助10
4秒前
y741应助呆萌的小刺猬采纳,获得20
4秒前
勤劳的斑马发布了新的文献求助200
4秒前
4秒前
kolico完成签到,获得积分10
4秒前
科研通AI6应助芝士学报采纳,获得30
4秒前
Domo完成签到 ,获得积分10
5秒前
dong发布了新的文献求助10
5秒前
情怀应助LIU采纳,获得20
5秒前
LYL完成签到,获得积分10
5秒前
Ava应助木头采纳,获得10
5秒前
Enso发布了新的文献求助10
6秒前
李健的小迷弟应助flyabc采纳,获得10
6秒前
浮游应助淡然寄瑶采纳,获得10
6秒前
ewfr发布了新的文献求助10
7秒前
SciGPT应助Jankin采纳,获得10
7秒前
丘比特应助西洲采纳,获得10
7秒前
7秒前
7秒前
8秒前
大个应助彼岸采纳,获得10
8秒前
666发布了新的文献求助10
8秒前
9秒前
ZDM6094完成签到 ,获得积分10
9秒前
在水一方应助啊懂采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853