Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior

人工智能 计算机科学 分割 深度学习 先验概率 模式识别(心理学) 图像分割 领域知识 医学影像学 监督学习 注释 贝叶斯网络 计算机视觉 贝叶斯概率 机器学习 人工神经网络
作者
Han Zheng,Lanfen Lin,Hongjie Hu,Qiaowei Zhang,Qingqing Chen,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Ruofeng Tong,Jian Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 148-156 被引量:64
标识
DOI:10.1007/978-3-030-32226-7_17
摘要

Medical image segmentation is one of the most important steps in computer-aided intervention and diagnosis. Although deep learning-based segmentation methods have achieved great success in computer vision domain, there are still several challenges in medical image domain. In comparison with natural images, medical image databases are usually small because the annotation is extremely time-consuming and requires expert knowledge. Thus, effective use of unannotated data is essential for medical image segmentation. On the other hand, medical images have many anatomical priors in comparison to non-medical images such as the shape and position of organs. Incorporating the anatomical prior knowledge in deep learning is a vital issue for accurate medical image segmentation. To address these two problems, in this paper we proposed a semi-supervised adversarial learning model with Deep Atlas Prior (DAP) to improve the accuracy of liver segmentation in CT images. We trained the semi-supervised adversarial learning model using both annotated and unannotated images. The DAP, which is based on the probability atlas of organ (liver) and contains prior information such as the shape and position, is combined with the conventional focal loss to aid segmentation. We call the combined loss as Bayesian loss and the conventional focal loss that utilizes the predicted probabilities of training data in the previous learning epoch as a likelihood loss. Experiments on ISBI LiTS 2017 challenge dataset showed that the performance of the semi-supervised network was significantly improved by incorporating with DAP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静的海发布了新的文献求助10
刚刚
刚刚
土豆泥泥发布了新的文献求助10
1秒前
chem001完成签到,获得积分10
1秒前
xiaogui发布了新的文献求助10
1秒前
Tobin发布了新的文献求助10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
邹小静完成签到 ,获得积分20
5秒前
5秒前
5秒前
Aa123321完成签到,获得积分10
7秒前
7秒前
苗条青槐完成签到,获得积分10
8秒前
海绵宝宝发布了新的文献求助10
9秒前
luotao应助文静的海采纳,获得10
9秒前
123关注了科研通微信公众号
9秒前
NexusExplorer应助穆振家采纳,获得10
9秒前
CodeCraft应助超帅的斌斌采纳,获得10
9秒前
9秒前
11秒前
斯文败类应助高院士采纳,获得10
12秒前
yznfly应助aaa采纳,获得30
14秒前
北风完成签到,获得积分10
14秒前
14秒前
Lin完成签到,获得积分10
14秒前
15秒前
我要啃木头完成签到,获得积分10
15秒前
17秒前
科研通AI6应助迷途的羔羊采纳,获得10
17秒前
nie完成签到,获得积分10
18秒前
不安的芝麻完成签到 ,获得积分10
18秒前
18秒前
烟花应助发文章12138采纳,获得10
18秒前
18秒前
哈hahehe发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649821
求助须知:如何正确求助?哪些是违规求助? 4779250
关于积分的说明 15050421
捐赠科研通 4808796
什么是DOI,文献DOI怎么找? 2571853
邀请新用户注册赠送积分活动 1528134
关于科研通互助平台的介绍 1486877